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The magnitude of future climate change depends substantially on
the greenhouse gas emission pathways we choose. Here we
explore the implications of the highest and lowest Intergovern-
mental Panel on Climate Change emissions pathways for climate
change and associated impacts in California. Based on climate
projections from two state-of-the-art climate models with low and
medium sensitivity (Parallel Climate Model and Hadley Centre
Climate Model, version 3, respectively), we find that annual tem-
perature increases nearly double from the lower B1 to the higher
A1fi emissions scenario before 2100. Three of four simulations also
show greater increases in summer temperatures as compared with
winter. Extreme heat and the associated impacts on a range of
temperature-sensitive sectors are substantially greater under the
higher emissions scenario, with some interscenario differences
apparent before midcentury. By the end of the century under the
B1 scenario, heatwaves and extreme heat in Los Angeles quadruple
in frequency while heat-related mortality increases two to three
times; alpine�subalpine forests are reduced by 50–75%; and Sierra
snowpack is reduced 30–70%. Under A1fi, heatwaves in Los
Angeles are six to eight times more frequent, with heat-related
excess mortality increasing five to seven times; alpine�subalpine
forests are reduced by 75–90%; and snowpack declines 73–90%,
with cascading impacts on runoff and streamflow that, combined
with projected modest declines in winter precipitation, could
fundamentally disrupt California’s water rights system. Although
interscenario differences in climate impacts and costs of adaptation
emerge mainly in the second half of the century, they are strongly
dependent on emissions from preceding decades.

California, with its diverse range of climate zones, limited
water supply, and economic dependence on climate-

sensitive industries such as agriculture, provides a challenging
test case to evaluate impacts of regional-scale climate change
under alternative emissions pathways. As characterized by the
Intergovernmental Panel on Climate Change, demographic,
socioeconomic, and technological assumptions underlying long-
term emissions scenarios vary widely (1). Previous studies have
not systematically examined the difference between projected
regional-scale changes in climate and associated impacts across
scenarios. Nevertheless, such information is essential to evaluate
the potential for and costs of adaptation associated with alter-
native emissions futures and to inform mitigation policies (2).

Here, we examine a range of potential climate futures that
represent uncertainties in both the physical sensitivity of current
climate models and divergent greenhouse gas emissions path-
ways. Two global climate models, the low-sensitivity National
Center for Atmospheric Research�Department of Energy Par-

allel Climate Model (PCM) (3) and the medium-sensitivity U.K.
Met Office Hadley Centre Climate Model, version 3 (HadCM3),
model (4, 5) are used to calculate climate change resulting from
the SRES (Special Report on Emission Scenarios) B1 (lower)
and A1fi (higher) emissions scenarios (1). These scenarios
bracket a large part of the range of Intergovernmental Panel on
Climate Change nonintervention emissions futures with atmo-
spheric concentrations of CO2 reaching �550 ppm (B1) and
�970 ppm (A1fi) by 2100 (see Emissions Scenarios in Supporting
Text, which is published as supporting information on the PNAS
web site). Although the SRES scenarios do not explicitly assume
any specific climate mitigation policies, they do serve as useful
proxies for assessing the outcome of emissions pathways that
could result from different emissions reduction policies. The
scenarios at the lower end of the SRES family are comparable
to emissions pathways that could be achieved by relatively
aggressive emissions reduction policies, whereas those at the
higher end are comparable to emissions pathways that would be
more likely to occur in the absence of such policies.

Climate Projections
Downscaling Methods. For hydrological and agricultural analyses,
HadCM3 and PCM output was statistically downscaled to a 1�8°
grid (�150 km2) (6) and to individual weather stations (7) for
analyses of temperature and precipitation extremes and health
impacts. Downscaling to the 1�8° grid used an empirical statis-
tical technique that maps the probability density functions for
modelled monthly precipitation and temperature for the clima-
tological period (1961–1990) onto those of gridded historical
observed data, so the mean and variability of observations are
reproduced by the climate model data. The bias correction and
spatial disaggregation technique is one originally developed for
adjusting General Circulation Model output for long-range
streamflow forecasting (6), later adapted for use in studies
examining the hydrologic impacts of climate change (8), and
compares favorably to different statistical and dynamic down-
scaling techniques (9) in the context of hydrologic impact studies.

Station-level downscaling for analyses of temperature and
precipitation extremes and health impacts used a deterministic
method in which grid-cell values of temperatures and precipi-

Freely available online through the PNAS open access option.

Abbreviations: DJF, December, January, February; HadCM3, Hadley Centre Climate Model,
version 3; JJA, June, July, August; PCM, Parallel Climate Model; SRES, Special Report on
Emission Scenarios; SWE, snow water equivalent.
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tation from the reference period were rescaled by simple
monthly regression relations to ensure that the overall proba-
bility distributions of the simulated daily values closely approx-
imated the observed probability distributions at selected long-
term weather stations (7). The same regression relations were
then applied to future simulations, such that rescaled values
share the weather statistics observed at the selected stations. At
the daily scales addressed by this method, the need to extrapolate
beyond the range of the historically observed parts of the
probability distributions was rare even in the future simulations
(typically �1% of the future days) because most of the climate
changes involve more frequent warm days than actual truly
warmer-than-ever-observed days (7).

Except where otherwise noted, we present projected climate
anomalies and impacts averaged over 2020–2049 (with a mid-
point of 2035) and 2070–2099 (here designated as end-of-

century, with a midpoint of 2085), relative to a 1961–1990
reference period.

Temperature. All simulations show increases in annual average
temperature before midcentury that are slightly greater under
the higher A1fi emissions scenario (see Fig. 4, which is published
as supporting information on the PNAS web site). By end-of-
century, projected temperature increases under A1fi are nearly
twice those under B1, with the more sensitive HadCM3 model
producing larger absolute changes (Table 1). Downscaled sea-
sonal mean temperature projections (10) show consistent spatial
patterns across California, with lesser warming along the south-
west coast and increasing warming to the north and northeast
(Fig. 1). Statewide, the range in projected average temperature
increases is higher than previously reported (11–14), particularly
for summer temperature increases that are equal to or greater
than increases in winter temperatures.

Table 1. Summary of midcentury (2020–2049) and end-of-century (2070–2099) climate and impact projections for the HadCM3 and
PCM B1 and A1fi scenarios

Units 1961–1990

2020–2049 2070–2099

PCM HadCM3 PCM HadCM3

B1 A1fi B1 A1fi B1 A1fi B1 A1fi

Change in statewide avg temperatures
Annual °C 15.0 1.35 1.5 1.6 2.0 2.3 3.8 3.3 5.8
Summer (JJA) °C 22.8 1.2 1.4 2.2 3.1 2.15 4.1 4.6 8.3
Winter (DJF) °C 7.6 1.3 1.2 1.4 1.45 2.15 3.0 2.3 4.0

Change in statewide avg precipitation
Annual mm 544 �37 �51 �6 �70 �38 �91 �117 �157
Summer (JJA) mm 20 �3 �2 �1 �7 �4 �46 �5 �1
Winter (DJF) mm 269 �45 �55 �4 �44 �13 �13 �79 �92

Sea level rise cm — 8.7 9.5 11.6 12.7 19.2 28.8 26.8 40.9
Heatwave days

Los Angeles Days 12 28 35 24 36 44 76 47 95
Sacramento Days 58 91 101 93 104 109 134 115 138
Fresno Days 92 113 120 111 116 126 147 126 149
El Centro Days 162 185 185 176 180 191 213 197 218

Length of heatwave season* Days 115 135 142 132 141 149 178 162 204
Excess mortality for Los Angeles†

Without acclimatization avg no. of
deaths�yr

— — — — — 394 948 667 1,429

With acclimatization avg no. of
deaths�yr

165 — — — — 319 790 551 1,182

Change in April 1 snowpack SWE
1,000–2,000 m elevation % 3.6 km3 �60 �56 �58 �66 �65 �95 �87 �97
2,000–3,000 m elevation % 6.5 km3 �34 �34 �24 �36 �22 �73 �75 �93
3,000–4,000 m elevation % 2.3 km3 �11 �15 4 �16 15 �33 �48 �68
All elevations % 12.4 km3 �38 �37 �26 �40 �29 �73 �72 �89

Change in annual reservoir inflow‡

Total % 21.7 km3 �18 �22 5 �10 12 �29 �24 �30
Northern Sierra % 15.2 km3 �19 �22 3 �9 9 �29 �20 �24
Southern Sierra % 6.5 km3 �16 �23 10 �14 17 �30 �33 �43

Change in April–June reservoir inflow‡

Total % 9.1 km3 �20 �24 �11 �19 �1 �46 �41 �54
Northern Sierra % 5.5 km3 �21 �24 �16 �19 �6 �45 �34 �47
Southern Sierra % 3.6 km3 �18 �24 �2 �19 5 �47 �52 �65

Change water year flow centroid‡

Total Days 03�26 0 2 �15 �7 �7 �14 �23 �32
Northern Sierra Days 03�13 0 3 �16 �5 �3 �11 �18 �24
Southern Sierra Days 05�01 �10 �7 �19 �12 �22 �34 �34 �43

avg, average; JJA, June, July, August; DJF, December, January, February; SWE, snow water equivalent.
*The number of days between the beginning of the year’s first and end of the year’s last heatwave.
†Reference period is 1990–1999, and projections are for the period 2090–2099.
‡Results are for inflows to seven major dams and reservoirs in the Sacramento�San Joaquin water system, including three in the Northern Sierra (Shasta, Oroville,
and Folsom) and four in the Southern Sierra (New Melones, New Don Pedro, Lake McClure, and Pine Flat).
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Precipitation. Precipitation shows a tendency toward slight de-
creases in the second half of the century with no obvious
interscenario differences in magnitude or frequency (see Figs.
5–10, which are published as supporting information on the
PNAS web site). Three of four simulations project winter
decreases of �15% to �30%, with reductions concentrated in
the Central Valley and along the north Pacific Coast. Only PCM
B1 projects slight increases (�7%) by the end of the century
(Table 1). These results differ from previous projections showing
precipitation increases of 75–200% by 2100 (11–13), but they are
consistent with recent PCM-based midrange projections (14, 15).
The larger-scale pattern of rainfall over North America is more
uniform across scenarios, showing an area of decreased (or lesser
increase in) precipitation over California that contrasts with
increases further up the coast (see Fig. 11, which is published as
supporting information on the PNAS web site). Because inter-
decadal variability often dominates precipitation over Califor-
nia, projected changes in climate and impacts associated with the
direct effects of temperature should be considered more robust
than those determined by interactions between temperature and
precipitation or precipitation alone.

Extreme Heat and Heat-Related Mortality
Temperature extremes increase in both frequency and magni-
tude under all simulations, with the most dramatic increases
occurring under the A1fi scenario. Changes in local temperature
extremes were evaluated based on exceedance probability anal-
yses, by using the distribution of daily maximum temperatures
downscaled to representative locations (16). Exceedance prob-
abilities define a given temperature for which the probability

exists that X% of days throughout the year will fall below that
temperature (i.e., if the 35°C exceedance probability averages
95% for the period 2070–2099, this means that an average of
95% or �347 days per year are likely to lie below 35°C). For the
four locations examined for extreme heat occurrence (Los
Angeles, Sacramento, Fresno, and Shasta Dam), mean and
maximum temperatures occurring 50% and 5% of the year
increase by 1.5–5°C under B1 and 3.5–9°C under A1fi by the end
of the century. Extreme temperatures experienced an average of
5% of the year during the historical period are also projected to
increase in frequency, accounting for 12–19% (B1) and 20–30%
(A1fi) of days annually by 2070–2099 (see Fig. 12, which is
published as supporting information on the PNAS web site).

The annual number of days classified as heatwave conditions
(3 or more consecutive days with temperature above 32°C)
increases under all simulations, with more heatwave days under
A1fi before midcentury (see Fig. 13, which is published as
supporting information on the PNAS web site). Among the four
locations analyzed, increases and interscenario differences are
proportionally greatest for Los Angeles, a location that currently
experiences relatively few heatwaves. By the end of the century,
the number of heatwave days in Los Angeles increases four times
under B1, and six to eight times under A1fi. Statewide, the length
of the heatwave season increases by 5–7 weeks under B1 and by
9–13 weeks under A1fi by the end of this century, with inter-
scenario differences emerging by midcentury (Table 1; see also
Fig. 14, which is published information on the PNAS web site).

The connection between extreme heat and summer excess
mortality is well established (17). Heat-related mortality esti-
mates for the Los Angeles metropolitan area were determined

Fig. 1. Downscaled winter (DJF) and summer (JJA) temperature change (°C) for 2070–2099, relative to 1961–1990 for a 1�8° grid. Statewide, SRES B1 to A1fi
winter temperature projections for the end of the century are 2.2–3°C and 2.3–4°C for PCM and HadCM3, respectively, compared with previous projections of
1.2–2.5°C and 3–3.5°C for PCM and HadCM2, respectively. End-of-century B1 to A1fi summer temperature projections are 2.2–4°C and 4.6–8.3°C for PCM and
HadCM3, respectively, compared with previous projections of 1.3–3°C and 3–4°C for PCM and HadCM2, respectively (11–14).
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by threshold meteorological conditions beyond which mortality
tends to increase. An algorithm was developed to determine the
primary environmental factors (including maximum apparent
temperature, number of consecutive days above the threshold
apparent temperature, and time of year) that explain variability
in excess mortality for all days with apparent maximum temper-
atures at or above the derived daily threshold apparent temper-
ature (18) value of 34°C (see Heat-Related Mortality in Supporting
Text). Estimates do not account for changes in population or
demographic structure.

From a baseline of �165 excess deaths during the 1990s,
heat-related mortality in Los Angeles is projected to increase by
about two to three times under B1 and five to seven times under
A1fi by the 2090s if acclimatization is taken into account (see
Heat-Related Mortality in Supporting Text). Without acclimati-
zation, these estimates are about 20–25% higher (Table 1).
Actual impacts may be greater or lesser depending in part on
demographic changes and societal decisions affecting prepared-
ness, health care, and urban design. Individuals likely to be most
affected include elderly, children, the economically disadvan-
taged, and those who are already ill (19, 20).

Impacts on Snowpack, Runoff, and Water Supply
Rising temperatures, exacerbated in some simulations by de-
creasing winter precipitation, produce substantial reductions in
snowpack in the Sierra Nevada Mountains, with cascading
impacts on California winter recreation, streamflow, and water
storage and supply. Snowpack SWE was estimated by using daily,
bias-corrected and spatially downscaled temperature and pre-
cipitation to drive the Variable Infiltration Capacity distributed
land surface hydrology model. The Variable Infiltration Capac-
ity model, using the resolution and parameterization also im-
plemented in this study, has been shown to reproduce observed

streamflows when driven by observed meteorology (10) and has
been applied to simulate climate change (8) in this region. April
1 SWE decreases substantially in all simulations before midcen-
tury (see Fig. 15, which is published as supporting information
on the PNAS web site). Reductions are most pronounced at
elevations below 3,000 m, where 80% of snowpack storage
currently occurs (Table 1 and Fig. 2). Interscenario differences
emerge before midcentury for HadCM3 and by the end of the
century for both models. These changes will delay the onset of
and shorten the ski season in California (see Impact of Decreasing
Snowpack on California’s Ski Industry in Supporting Text).

Water stored in snowpack is a major natural reservoir for
California. Differences in SWE between the B1 and A1fi sce-
narios represent �1.7 km3 of water storage by midcentury and
2.1 km3 by the end of the century for HadCM3. For PCM, overall
SWE losses are smaller, but the difference between the A1fi and
B1 scenarios is larger by the end of the century, representing �4
km3 of storage. Reductions for all simulations except PCM under
the lower B1 emission scenario are greater than previous pro-
jections of diminishing snowpack for the end of the century (8,
21). By 2020–2049 the SWE loss is comparable to that previously
projected for 2060 (22).

Warmer temperatures and more precipitation falling as rain
instead of snow also causes snowmelt runoff to shift earlier
under all simulations (Table 1), which is consistent with earlier
studies (23). The magnitude of the shift is greater in the
higher-elevation Southern basins and under the higher A1fi
scenario. Stream inf lows to major reservoirs decline because
of diminished snowpack and increased evaporation before
midcentury, except where winter precipitation increases (Ta-
ble 1). The greater reductions in inf lows seen under A1fi are
driven by both higher temperatures and lower average precip-
itation as compared with B1.

Fig. 2. Average snowpack SWE for 2020–2049 and 2070–2099 expressed as a percent of the average for the reference period 1961–1990 for the Sierra Nevada
region draining into the Sacramento–San Joaquin river system. Total SWE losses by the end of the century range from 29–72% for the B1 scenario to 73–89%
for the A1fi scenario. Losses are greatest at elevations below 3,000 m, ranging from 37–79% for B1 to 81–94% for A1fi by the end of the century. Increases in
high elevation SWE for midcentury HadCM3 B1 and end-of-century PCM B1 runs result from increased winter precipitation in these simulations.
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Earlier runoff may also increase the risk of winter flooding (7).
Currently, state operators maintain �12 km3 of total vacant
space in the major reservoirs to provide winter and early spring
flood protection,n a volume approximately equal to that stored
in the natural snowpack reservoir by April 1st. Capturing earlier
runoff to compensate for future reductions in snowpack would
take up most of the flood protection space, forcing a choice
between winter flood prevention and maintaining water storage
for the summer and fall dry period use. Flood risk and fresh-
water supply are also affected by higher sea levels, which are
projected to rise 10–40 cm under B1 and 20–65 cm under A1fi
by 2100 (Table 1; see also Fig. 16, which is published as
supporting information on the PNAS web site).

Declining Sierra Nevada snowpack, earlier runoff, and re-
duced spring and summer streamflows will likely affect surface
water supplies and shift reliance to groundwater resources,
already overdrafted in many agricultural areas in California (24).
This could impact 85% of California’s population who are
agricultural and urban users in the Central Valley, San Francisco
Bay Area, and the South Coast, about half of whose water is
supplied by rivers of the Central Valley. Under A1fi (both
models) and B1 (HadCM3), the projected length, frequency, and
severity of extreme droughts in the Sacramento River system
during 2070–2099 substantially exceeds what has been experi-
enced in the 20th century. The proportion of years projected to
be dry or critical increases from 32% in the historical period to
50–64% by the end of the century under all but the wetter PCM
B1 scenario (see Table 2, which is published as supporting
information on the PNAS web site). Changes in water availability
and timing could disrupt the existing pattern of seniority in
month-dependent water rights by reducing the value of rights to
mid- and late-season natural streamflow and boosting the value
of rights to stored water. The overall magnitude of impacts on
water users depends on complex interactions between temper-
ature-driven snowpack decreases and runoff timing, precipita-

tion, future population increases, and human decisions regarding
water storage and allocation (see Impacts on Water Supply in
Supporting Text).

Impacts on Agriculture and Vegetation Distribution
In addition to reductions in water supply, climate change could
impact California agriculture by increasing demand for irrigation
to meet higher evaporative demand, increasing the incidence of
pests (25), and through direct temperature effects on production
quality and quantity. Dairy products (milk and cream, valued at
$3.8 billion annually) and grapes ($3.2 billion annually) are the
two highest-value agricultural commodities of California’s $30
billion agriculture sector (26). Threshold temperature impacts
on dairy production and wine grape quality were calculated by
using downscaled temperature projections for key counties,
relative to average observed monthly temperatures.o

For dairy production, losses were estimated for temperatures
above a 32°C threshold (27), as well as for additional losses
between 25°C (28) and 32°C. For the top 10 dairy counties in the
state (which account for 90% of California’s milk production),
rising temperatures were found to reduce production by as much
as 7–10% (B1) and 11–22% (A1fi) by the end of the century (see
Table 3, which is published as supporting information on the
PNAS web site). Potential adaptations may become less practical
with increasing temperature and humidity (29).

For wine grapes, excessively high temperatures during ripen-
ing can adversely affect quality, a major determinant of market
value. Assuming ripening occurs at between 1,150 and 1,300
biologically active growing degree days (30), ripening month was
determined by summing modeled growing degree days above
10°C from April to October, for both baseline and projected
scenarios. Monthly average temperature at the time of ripening
was used to estimate potential temperature impacts on quality.
For all simulations, average ripening occurs 1–2 months earlier
and at higher temperatures, leading to degraded quality and
marginal�impaired conditions for all but the cool coastal region

nSee the U.S. Army Corps of Engineers Flood Control Requirements for California Reser-
voirs, Sacramento District Water Control Data System, Sacramento, CA (www.spk-
wc.usace.army.mil).

oSee Western U.S. Climate Historical Summaries (Western Regional Climate Center) at
www.wrcc.dri.edu�climsum.html.

Fig. 3. Statewide change in cover of major vegetation types for 2020–2049 and 2070–2099, relative to simulated distributions for the 1961–1990 reference
period. ASF, alpine�subalpine forest; ECF, evergreen conifer forest; MEF, mixed evergreen forest; MEW, mixed evergreen woodland; GRS, grassland; SHB,
shrubland; DES, desert. Increasing temperatures drive the reduction in alpine�subalpine forest cover and cause mixed conifer forest to displace evergreen conifer
forest in the Sierra Nevada Mountains and the North Coast. Mixed conifer forest in the South Coast expands because of increased humidity and reduced fire
frequency. Because of drier conditions and increased fire frequency in inland locations, grassland displaces shrubland and woodland, particularly in the PCM
simulations, whereas warmer and drier conditions under HadCM3 cause an expansion of desert cover in the southern Central Valley.

12426 � www.pnas.org�cgi�doi�10.1073�pnas.0404500101 Hayhoe et al.



under all scenarios by the end of the century (see Table 3, which
is published as supporting information on the PNAS web site).
As with other perennial crops, adaptation options to shift
varieties or locations of production would require significant
time and capital investment.

The distribution of California’s diverse vegetation types also
changes substantially over the century relative to historical
simulations (Fig. 3; see also Fig. 17, which is published as
supporting information on the PNAS web site). Projections of
changes in vegetation distribution are those given by MC1, a
dynamic general vegetation model that simulates climate-driven
changes in life-form mixtures and vegetation types; ecosystem
fluxes of carbon, nitrogen, and water; and fire disturbance over
time (31). Vegetation shifts driven primarily by temperature,
such as reductions in the extent of alpine�subalpine forest and
the displacement of evergreen conifer forest by mixed evergreen
forest, are consistent across models and more pronounced under
A1fi by the end of the century. Changes driven by precipitation
and changes in fire frequency are model-dependent and do not
exhibit consistent interscenario differences. Most changes are
apparent before mid-century, with the exception of changes in
desert cover. The shift from evergreen conifer to mixed ever-
green forest and expansion of grassland are consistent with
previous impact analyses (13), whereas the extreme reduction in
alpine�subalpine forest and expansion of desert had not been
reported in previous impacts assessments (12, 13).

Conclusions
Consistent and large increases in temperature and extreme heat
drive significant impacts on temperature-sensitive sectors in

California under both lower and higher emissions scenarios, with
the most severe impacts occurring under the higher A1fi sce-
nario. Adaptation options are limited for impacts not easily
controlled by human intervention, such as the overall decline in
snowpack and loss of alpine and subalpine forests. Although
interscenario differences in climate impacts and costs of adap-
tation emerge mainly in the second half of the century, they are
largely entrained by emissions from preceding decades (32).
SRES scenarios do not explicitly assume climate-specific policy
intervention, and thus this study does not directly address the
contrast in impacts due to climate change mitigation policies.
However, these findings support the conclusion that climate
change and many of its impacts scale with the quantity and timing
of greenhouse gas emissions (33). As such, they represent a solid
starting point for assessing the outcome of changes in green-
house gas emission trajectories driven by climate-specific policies
(32, 34), and the extent to which lower emissions can reduce the
likelihood and thus risks of ‘‘dangerous anthropogenic interfer-
ence with the climate system’’ (35).
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Supporting Text

Emissions Scenarios

The Intergovernmental Panel on Climate Change’s latest suite of emission scenarios,

known as SRES (Special Report on Emissions Scenarios) (1), describe internally

consistent pathways of future greenhouse gas emissions. SRES scenarios cover a wide

range of alternative futures based on projections of economic growth, technology, energy

intensity, and population. The SRES scenarios are not assigned probabilities, but rather

can be viewed as possible futures, with the actual path depending on technology,

economic development, and political will. The B1 and A1fi scenarios used in this study

bracket the range of SRES scenarios, and they can be thought of as lower and higher

bounds that encompass most, but not all, potential nonintervention emissions futures.

Both scenarios follow similar demographic trends, with global population peaking in

midcentury and then declining. Both also involve rapid technological development. At

the higher end, however, economic growth and globalization lead to increases in energy

use and industrial production, with much of the technological development being focused

on fossil energy sources. This causes A1fi CO2 emissions to climb throughout the

century, reaching almost 30 Gt/year or six times 1990 levels by 2100 (2). Emissions

under the B1 scenario are lower, based on a world that transitions relatively rapidly to

service and information economies and that emphasizes the development of clean,

nonfossil technology. CO2 emissions in the B1 scenario peak at just below 10 Gt/year,

around two times 1990 levels, at mid-century and decline slowly to below current-day

levels. For comparison with mid-range business-as-usual projections used by previous

studies (3-6), the temperature and precipitation projections provided here (Figs. 4 and 5)

also include those corresponding to the mid-range A2 and B2 scenarios. Emissions and

hence temperature projections for these scenarios fall between those of A1fi and B1, but

underlying assumptions are very different. A2 describes a very heterogeneous world

where economic development is regionally oriented and economic growth and

technological change are relatively slow, whereas in B2 the emphasis is on local solutions

to economic, social, and environmental sustainability with less rapid and more diverse

technological change.

Precipitation

Projections of change in precipitation over California from the higher, lower, and two

mid-range scenarios for both models tend to decrease, with most end-of-century

projections falling between 0 and –1 mm/day. The full range varies between a net

increase of +0.25 mm/day (PCM B1) to a decrease of –1 mm/day (HadCM3 A1fi) (Figs.

5 and 6). In general, precipitation appears to be dominated by interdecadal variability

rather than long-term trends (Fig. 5). However, both models and scenarios do exhibit a

consistent continental-scale pattern of increased precipitation along the upper Pacific



coast, with little change, generally a drying, over California by the end of the century

(Fig. 11). In terms of extreme precipitation, the number of very wet days, indicated by

nonexceedence probabilities of 95% at selected stations across California, decreases by

2–5% or 7–18 days per year (Fig. 7). Analysis of heavy rainfall events lasting 1, 4, and 7

days show a slight decrease in frequency over northern California and little change in

southern California for HadCM3 projections (Fig. 8). In contrast, PCM projections

suggest a possible increase in heavy precipitation events, particularly for the wetter B1

scenario, for shorter 24-hr events, and for southern California. Overall, changes in

precipitation exceedance probabilities and heavy precipitation event frequencies show

little significant trend, a result consistent with the lack of observed historical trend over

the past century (7). Extreme dry periods are not projected to change significantly in

either length or duration (Figs. 9 and 10). However, there is some indication that events

on the order of a few weeks may become more frequent in the future, particularly for

northern California (approximately one to two additional events per year for 2-week dry

periods).

Extreme Heat

A measure of the projected change in maximum temperature extremes (8) is given by the

shift in the 50% (mean maximum daily temperature) and the 95% (5% highest mean

maximum daily temperatures for each 30-year period or roughly 18 days/year with

temperatures exceeding this amount) nonexceedance values. The maximum daily

temperature (Tx) exceedence probabilities at Shasta Dam, Los Angeles, Sacramento, and

Fresno for emission scenarios A1fi and B1 using PCM and HadCM3 projections are

shown in Fig. 12. The end-of-century change in 50% and 95% Tx exceedence

probabilities for Shasta Dam are each greater than 7°C for the HadCM3 A1fi scenario

and 6°C for the PCM A1fi scenario. Fresno also has shifts in Tx exceedence greater than

6°C for both scenarios. The 1961-1990 baseline 95% exceedence becomes the 70% and

75% exceedence values for HadCM3 and PCM A1fi, and 82% and 84% exceedence

values for B1. Such shifts indicate that Fresno’s historic 5% warmest days may occur as

frequently as 25–30% of the year for A1fi and 16–18% for B1 by the end of this century.

Other inland sites follow this increase in the number of warm days.

Exceedance probabilities can also be used to measure the number of days on which

temperatures exceed a standardized threshold of 32°C (Fig. 12). By the end of the century

(2070-2099), Los Angeles is projected to see such temperatures on as many as 110

days/year under the A1fi scenario, with a 33- to 44-day difference between emissions

scenarios, a dramatic increase over the 22 days/year experienced during the reference

period. Other locations are projected to experience less dramatic but substantial increases

in extreme heat frequency.



Extreme heat can also be represented by changes in the length of the heatwave season

and the number of days classified as heatwave conditions (here defined as 3 or more

consecutive days with temperatures exceeding 32°C). The lengthening of future heat

wave seasons is primarily due to earlier onset, with the season beginning 25-40 days

earlier under B1, and twice that (50-80 days earlier) under the A1fi scenario (Fig. 14).

Increases in the number of heatwave days under the B1 scenario are similar across most

locations, ranging from 27-58 days/year (Fig. 13). Under A1fi, 49-83 more heatwave

days are seen, which represents an increase of ~20-30 more days than under the B1

scenario. Proportionally greater increases are seen for Los Angeles, which currently

experiences the lowest occurrence of heatwave days per year (12, as opposed to 60-160

for other locations).

Heat-Related Mortality

The mortality estimates derived for the B1 and A1fi 2090 scenarios were developed for

the Los Angeles metropolitan area by using procedures that determine threshold

meteorological conditions beyond which mortality tends to increase. Meteorologically

“oppressive” conditions are determined by identifying maximum apparent temperature

thresholds that have been historically associated with rising heat-related mortality.

Apparent temperature is a combination of the impacts of temperature, relative humidity,

and windspeed on the human body, and it can be considered an adequate surrogate to

evaluate heat transfer effects on humans (9). Relating daily human mortality to daily

maximum apparent temperature values, a threshold apparent temperature value was

determined for Los Angeles of 34°C. When reached or exceeded, this daily apparent

temperature threshold yields a mean mortality value that is statistically significantly

higher than the long-term mean at a 0.05 level of significance.

An algorithm was developed for all days with maximum apparent temperatures at or

above 34°C to determine the environmental factors most responsible for explaining the

variability in mortality during oppressive weather. Both meteorological (maximum and

minimum apparent temperature and dewpoint, cloud cover, and others) and

nonmeteorological (consecutive days of oppressive weather and time of season when

oppressive weather occurs) variables are potential dependent variables within this

algorithm, which can be used to estimate daily heat-related mortality. The final algorithm

(P < 0.001) is:

Mortp = –8.481 + 0.326AT + 1.891CD – 0.012TS,

where estimated daily mortality (Mortp) is given as a function of maximum apparent

daily temperature (AT), the day’s position in a consecutive sequence of days with

maximum apparent temperature equal to or exceeding 34°C (CD), and days after May 1

(TS).



The impact of acclimatization was determined by using a procedure that we deem

superior to the previously common “analog city” approach (10). The new acclimatization

procedure assumes that people will most likely respond to heat under climate change

conditions as they do today during the very hottest summers. Thus, instead of choosing

analog cities, which possess different demographics and urban structure than the target

city, we have selected “analog summers” in the target city that best duplicate the

summers as expressed in the climate change scenarios. For Los Angeles, the five hottest

summers over the past 24 years were selected based on mean summer apparent

temperature values. A new algorithm was developed for days during the hottest summers

that equaled or exceeded the apparent temperature threshold of 34°C. The algorithm is:

Mortp = –4.774 + 0.178AT + 1.928CD – 0.013TS.

As expected, the new algorithm for the hottest summers shows a decreased sensitivity to

the heat because of intraseasonal acclimatization (this is apparent in the lower coefficient

for the AT variable). By using the new algorithm, revised mortality totals were derived.

Under acclimatization, mortality totals averaged on the order of 15–20% lower than those

yielded by the original algorithm (see Table 1). This is our best estimate for acclimatized

mortality in Los Angeles under the two given climate change scenarios.

Impact of Decreasing Snowpack on California’s Ski Industry

Projections of decreases in Sierra snowpack (Fig. 15) have the potential to substantially

affect California’s ski industry. Most of California’s 34 ski resorts are based between

2,000–2,500 m with a vertical rise of ~800–1,200 m. For these elevations, we use a

conservative estimate of a 50 mm minimum SWE threshold to define the beginning of the

ski season. This lower bound corresponds to 200–500 mm or only 1–2 ft of snow depth

under typical snow densities (11). This value is taken as the range of minimum snow

required for ski slope operation for some resorts, although a higher range of 2–4 ft may

be a more accurate average for California ski resorts in general (B. Roberts, California

Ski Industry Association, personal communication).

For the reference period 1961-1990, the beginning of the snow season tends to fall during

the last week of November, and it lasts until late June. Under all scenarios, the ski season

is found to shorten, with the majority of the change being an earlier melt date. However,

the delay in the start of the ski season is sufficient to suggest likely impacts on the

economic vitality of the ski industry, as there is a general reliance for successful

operations on snow cover in ski areas by mid December (B. Roberts, California Ski

Industry Association, personal communication). For PCM simulations, by the end of the

century the start of the ski season is delayed by 22 (B1) to 29 (A1fi) days and is 49–103

days shorter. Under the HadCM3, similar delays occur by mid-century, and by the end of



the century, the ski season begins 36 days later under B1, while the 50-mm threshold is

never crossed under the A1fi scenario (Fig. 15).

Costs of adaptation may include increased reliance on snowmaking and/or relocating or

terminating operations. Relocation options may be limited, however, as many of the ski

resorts in Oregon and Washington State are located at lower elevations than those in

California. Mid-range PCM estimates show snowpack reductions of 63% for the

Cascades and 40% for the entire Columbia River Basin, on the same order as reductions

seen in California under similar projections (13), suggesting a net loss rather than shift in

ski-related tourist income throughout the region.

Sea-Level Rise

Sea levels along the California coast are projected to continue to rise over the next

century. Future rates of increase range from ≈10–43 cm/100 years for B1 to ≈18–64

cm/100 years for A1fi (Fig. 16), compared to the historical 17 cm/100 years rate of mean

global sea-level rise (2). Higher sea levels would threaten many elements of California’s

social, economic, freshwater, and ecological systems (14). El Niño has produced some of

the highest sea levels and winter storms with the highest coastal waves (15) observed in

several decades of records along the California coast. The combination of such events

with heightened mean sea level and increased diurnal tidal ranges (16) would expose the

coast to severe flooding and erosion, damage to coastal structures and real estate, and

salinity intrusion of vulnerable coastal aquifers. The San Francisco Bay and Delta are

particularly vulnerable to rising sea levels, which may cause flooding of leveed islands,

real estate, and wetlands as well as greater salt water intrusion into the North Bay and

Delta. This would impact currently protected ecosystems as well as the fresh water

supply in that region (17, 18).

Impacts on Water Supply

The ultimate impacts of climate change on water availability, timing, and supply for

California are as much a function of the behavioral response of individuals and

organizations as of hydrology. If snowmelt is used for storage, there is the potential for

very little impact on supply, although with greatly reduced storage the risk of water

shortages during dry years would increase. If used primarily for supply, reductions in

available water from river sources could be almost as large as the projected decreases in

April snowpack, which are greatest under the A1fi scenario.

Additional storage could be developed at some cost whether in the form of above-ground

storage or aquifer-based conjunctive use. Without additional storage, even with higher

runoff during some winter months it appears unlikely that the extra runoff could

effectively be captured and retained for use after April 1 without reducing the amount of



flood storage space left in reserve on April 1. Besides flood storage in April, the amount

of water that can be delivered from storage during the summer irrigation season is

determined by the amount of water that needs to be left in storage at the end of the

summer for carryover to protect against the possibility of drought in the following years.

Both the need to leave empty storage for flood protection on April 1 and the need for

carryover storage at the end of the summer reflect uncertainty about future weather

conditions and risk aversion on the part of reservoir operators. To the extent that there

might be an increase in the future variability of precipitation and streamflow, we would

expect to see a greater need for precaution in reservoir management.

Changes in water availability and timing have important implications for water supply

and management (19). The existing pattern of seniority in water rights could be disrupted

by reducing the value of rights to mid- and late-season natural streamflow and boosting

the value of rights to stored water. The degree to which users would be affected depends

on how private surface water rights and contractual arrangements within the two major

California water projects adapt to substantial changes in natural flow conditions. Senior

users without access to storage, including many riparians and holders of water rights that

predate the major projects, could face unprecedented shortages due to reduced

summertime streamflow. Seventy-five percent of total water use currently occurs

between April and September when lawns are being watered and crops are being grown.

With existing weak controls on groundwater pumping, a probable response is increased

groundwater pumping that could exacerbate existing overdraft in the San Joaquin Valley.

California identifies five types of water years, ranging from wet to critical, based on the

amount of unimpaired runoff in the Sacramento and San Joaquin River systems. Table 2

shows the distribution of water year types for the Sacramento River system (the 40-30-30

Four River Index) over the historical period 1906-1999 together with the projected

distribution of year types over the period 2070-2099 under alternative climate change

scenarios. In the historical period, 31% of the years were dry or critical. Under PCM B1,

the proportion of years projected to be dry or critical at the end of the century falls to

about 8%, but under the other three scenarios (PCM A1fi, HadCM3 A1fi and B1) it rises

to 50–64%. For the three drier scenarios, the frequency of the driest year on record over

the last century increases 10-fold to approximately one time per decade by the end of the

century.

Under the drier scenarios, the length, severity and frequency of extreme droughts, defined

as occurring only once over the past hundred years for the Sacramento River system,

could more than double with equal or greater water loss. The Sacramento River runoff

averaged 22.1 km3/year over the historical period and the lowest annual runoff recorded

was 6.3 km3/year in 1976. Over the period 2070-2099, 2 years are projected to have

lower annual runoff than this under HadCM3 B1, and 3 years are projected to have lower

annual runoff under PCM A1fi and HadCM3 A1fi, the lowest being a runoff of 4.4



km3/year projected under HadCM3 A1fi. In the historical period, the worst 2-year

drought occurred in 1976–1977 when the Sacramento River runoff averaged 8.1

km3/year; other major droughts were 1929–1934, when the runoff averaged 12.1

km3/year, and 1987–1992, when it averaged 12.3 km3/year. Over the period 2070–2098,

PCM A1fi projects a 4-year drought where the runoff averages 9.9 km3/year and two 3-

year droughts where it averages 7.2 and 11.8 km3/year, respectively. HadCM3 A1fi

projects a 14-year drought where the runoff averages 10.7 km3/year, and HadCM3 B1

projects a 3-year drought where the runoff averages 8.5 km3/year.

These estimates are likely to understate the severity of any future droughts or water

shortages as they do not account for changes in climate variability (for example, there is

some indication of increases in the frequency of dry periods on the order of 2 weeks; see

“Precipitation” above). Despite population growth for the past 15-20 years, water

withdrawals over the United States and California have been fairly constant as water use

efficiency has increased (20). However, population growth in California is expected to

double or even triple from its current population of 34 million by the end of the century

(5), which is likely to increase water demand but is not accounted for in estimates of

water impacts here.

Temperature Impacts on Agriculture

Increases in average and extreme temperatures due to climate change are likely to

produce adverse effects on quantity and quality for a number of California’s agricultural

products, including dairy products and wine grapes. Milk production begins to decline at

temperatures greater than 25°C (21), and Holsteins, the predominant breed in California,

have demonstrated a 1.15 kg decline in daily milk production per degree over 32°C (22).

Dairy production is currently concentrated in the south Central Valley, with 67% of 2002

dairy value originating in only five counties [Tulare, Merced, Stanislaus, San Bernardino,

and Kings (23)]. High-end estimates of production loss over 25°C, which are probably

more reflective of the temperature ranges found in California, show the largest

production decline in the highest-producing counties for both HadCM3 scenarios,

whereas PCM predicts a loss throughout California (Table 3). For the low-end estimates

(T > 32°C), milk production is moderately reduced in both HadCM3 scenarios and

negligible for both PCM scenarios. Statewide, production losses for the 25°C threshold

range from –7 to –10% for the B1 scenario, but almost double to –11 to –22% for the

A1fi scenario. Interscenario differences are even more pronounced for the 32°C

threshold, where losses for B1 are minimal, at ~0.5–2.5% while A1fi shows losses of 2–

8% of production value (Table 3). Potential adaptations include using shade and

sprinklers to reduce heat stress (24), measures that can be cost-effective under some

conditions but become less so with increasing temperature and humidity (25).



For most wine grape varieties, the average temperature should fall between 15°C and

21°C in the final month of ripening to produce high-quality wines; average monthly

temperature exceeding 24°C nearly always reduce quality for most table wines, through

the combined effects of heat and moisture stress (12). Under all simulations, the timing of

grape harvest based on accumulated degree-days above 10°C beginning in April is

expected to be an average of 1–2 months earlier in 2070-2099 relative to the reference

period. This produces a shift from optimal to marginal and marginal to quality-impaired

ripening temperatures across major grape-growing regions. By mid-century, all

simulations show a slight shift to the warmer end of the optimal range in currently

optimal grape-growing zones in the Wine Country (Sonoma and Napa Counties) and

Cool Coastal (Monterey and Mendocino Counties) areas. By the end of the century, all

simulations show a shift from optimal to marginal or impaired conditions in the Wine

Country and the Central Coast (San Luis Obispo and Monterey Counties; see Table 3).

All scenarios also show a shift from current marginal to impaired conditions for the

Central Valley grape-growing regions by mid-century and beyond. By 2070–2099, even

under the lower B1 scenario all regions become either marginal or impaired with the

exception of the Cool Coastal region. Under the A1fi scenario, the majority of locations

are impaired, suggesting significant economic impacts of modeled temperature increases

for grape-growing regions throughout California. 

Changes in Vegetation Distribution

Changes in vegetation distribution across California occur under all scenarios, as initial

decreases in some vegetation types and increases in others that are first visible in 2020–

2049 almost double by 2070–2099 (Fig. 17). Temperature-induced declines in

Alpine/Subalpine forest (with almost total disappearance under HadCM3 A1fi) and major

shifts from evergreen conifer forest to mixed evergreen conifer forest are fairly robust

across models, increasing in magnitude from the B1 to A1fi scenarios. Under all

simulations, wildfire plays a role in converting shrubland and woodland to grassland.

Decreases in effective moisture shift the competitive balance in favor of the more

drought-tolerant grasses, and increases in grass biomass provide more fine fuels that

support more frequent fires. Increased fire favors grasses, which re-establish more rapidly

than slower growing woody lifeforms after burning. The increase in grassland is much

larger for the PCM than for the HadCM3 scenarios, highlighting the complexity of the

fire-mediated changes driven not only by changes in the structure and loading of fuels

with changes in effective moisture, but also by changes in temperature and humidity as

they affect fuel moisture. The effect of the latter is also evident along the southern coast

where increases in fuel moisture with increased humidity result in less fire and the

consequent expansion of forest under the PCM scenarios. Declines in effective moisture

under the warmer and drier HadCM3 scenarios reduce the productivity of both grass and

woody lifeforms in the southern Central Valley, resulting in a significant expansion of

desert. Under the PCM scenarios, more moderate declines in effective moisture trigger a



fire-mediated shift from desert scrub to arid grassland in this region of the state. The only

areas to experience little change are the north part of the Central Valley, which remains

grassland under all scenarios, and the Southeast, which remains desert.
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