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Abstract 

 
Cube Satellites are small satellites used by NASA and other non-governmental space companies as a 

cost-effective means to get a payload into space to perform research and develop new technologies. 

The Robotic Systems Lab at Santa Clara University has designed and launched several Cube 

Satellites over the last ten years. We will be continuing the design of a 3U CubeSat began by a senior 

design team last year. The goal of this project is to design and build an electronic power system 

(EPS) for the CubeSat. The EPS must be able to power all system components, including the 

communication board, the radio and beacon, as well as any additional customer payload. The system 

is designed to provide power for the satellite throughout the entire orbit, even during periods of 

eclipse when the satellite will be unable to generate power. In addition, this project is experimenting 

with a new technology, supercapacitors, to test their potential uses in space. The EPS is a hybrid 

system utilizing both batteries as a reliable source of power storage and supercapacitors in order to 

test their capabilities.  

 
Keywords 
 
cube satellite, CubeSat, nano-satellite, supercapacitors, electronic power system 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

ii 
 

 

Acknowledgements 

 

We would like to thank the Santa Clara University Robotic Systems Laboratory for the support 

and funding for our project. Thank you to our advisors Dr. Shoba Krishnan from the Electrical 

Engineering Department and Dr. Christopher Kitts from the Robotic Systems Laboratory and the 

Mechanical Engineering Department for their guidance. Thank you to Kelvin LeBeaux from 

Texas Instruments and Brooks Leman from industry for their advice and support in picking and 

testing components. Finally, thank you to our fellow student JP Allport for advice and training in 

PCB board layout.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

iii 
 

 

TABLE OF CONTENTS 

Chapter 1 – Introduction……………………………………………………………….…………1  

1.1 Problem Statement………..……….…………………………………………………..1 

1.2 Project Background……..….…….……………………………………………………1 

1.3 Project Objectives……………………………………………………………………..2 

Chapter 2 – System Overview…………………………………………………………………….4 

2.1 Electrical Components…………..…………………………………………………….4 

2.2 Power Generation………………...…..………………………………………………..5 

2.3 Power System Overview………………………………………………………………5 

Chapter 3 – Battery Management……………….………………………………………………..7 

3.1 Battery Selection……………………………………………………………………..7 

3.2 Battery Management System Selection…………………………………………….10 

3.3 LT3652 Configuration…………………………..………………………………….12 

3.4 LT3652 Simulation……………………………...………………………………….15 

3.5 LT3652 Demo Board Verification…………………………………………………15 

Chapter 4 – Supercapacitors…………………………………………………………………….17 

4.1 Supercapacitor Objective………….…………………………………………………17 

4.2 Supercapacitor Selection………….………………………………………………….17 

4.3 Charge Management……………...………………………………………………….18 

4.4 Experimental Verification………..…………………………………………………..18 

4.5 Beacon Pulsing…………………….…………………………………………………20 

Chapter 5 – Voltage Regulation…………….……………………………………………………21 

 5.1 LT3757 SEPIC Converter…………..………………………………………………..21 

Chapter 6 – PCB Design…………………………………………………………………………22 

 6.1 General Design Considerations……..………………………………………………..22 

 6.2 Power Board………………………....……………………………………………….24 



 

iv 
 

 6.3 Supercapacitor Board………………..……………………………………………….25 

Chapter 7 – Ethical and Aesthetical Considerations……………………………………………26 

7.1 Stakeholder Needs……………….…….…………………………………………….26 

7.2 Ethical Considerations…………...…………………………………………………..26 

7.3 Aesthetics of Senior Design……….…………………………………………………30 

Chapter 8 – Conclusion……………………………………………………..……………………32 

APPENDICES 

Appendix A: LT3652 Datasheet…………………………………………………………………33 

Appendix B: LT3757 Datasheet…………………………………………………………………59 

Appendix C: Tenergy Battery Datasheet………………………………………………………...95 

Appendix D: Maxwell PC10 Datasheet………………………………………………………...102 

Appendix E: TI BQ24620 Datasheet…………………………………………………………...107 

Appendix F: Power Board BOM……………………………………………………………….134 

Appendix G: Supercapacitor BOM…………………………………………………………......137 

LIST OF FIGURES 

Figure 1: Low-Earth Orbit………………………………...………………………………………2 
Figure 2: System Block Diagram………………………………………………………………….4 
Figure 3: Power System Block Diagram…………………………………………………….……6 
Figure 4: Tenergy Li-ion Battery…………………………………………………………….…....9 
Figure 5: Charging Profile of Tenergy Li-Ion Battery………………………………………….10 
Figure 6: Power Path Control of LT3652 Chip…………………………………………………12 
Figure 7: Configuration of Feedback Voltage Divider of LT3652…………………………….13 
Figure 8: Power Curve and MPPT……………………………………………………………….14 
Figure 9: Charging Cycle Simulation of LT3652……………………………………………….15 
Figure 10: Charging Cycle Experiential Data……………………………………………………16 
Figure 11: Maxwell PC-10 Supercapacitor………………………………………………………17 
Figure 12: BQ24640 Schematic………………………………………………………………….18 
Figure 13: Supercapacitor Datasheet Charge and Discharge Profiles……………......................19 
Figure 14: Experiential Supercapacitor Charge and Discharge Profile………………………….19 
Figure 15: Beacon Pulsing Data…………………………………………………………………20 
Figure 16: LT3757 SEPIC Converter……………………………………………………………21 
Figure 17: Hardware for Communications Board……………………………………………….23 
Figure 18: Power Board…………………………………………….……………………………24 
Figure 19: Supercapacitor Board……………………………………………………….………..25 



 

1 
 

Chapter 1: Introduction 
 
 
1.1 Problem Statement 
 
 
In collaboration with the SCU Robotic Systems Lab, this project designed a fully-functioning 

electronic power system (EPS) for a 3U CubeSat. The EPS will provide power for all system 

components and any additional customer payload throughout the entire orbit, including periods 

of eclipse without power generation. In addition to providing reliable power, the EPS will also 

experiment with a new technology, supercapacitors, in order to explore their potential uses in the 

space industry.  

 
 
1.2 Background 
 
 
As the space industry has grown, satellites have grown in complexity and size, which has 

improved their capabilities but also increased their costs. Space research and technology 

development is inhibited by the high-cost and high-risk of satellite development and launch. 

Large satellite projects tend to rely upon outdated technologies because of their proven flight 

history rather than experimenting with cutting-edge technologies. CubeSats were developed as a 

lower-risk and cost-effective means of satellite technology development as well as space 

research.  

 

CubeSats, or nano-satellites, are small satellites typically between 1-10 kgs. CubeSats are 

typically student-built and low-cost under $50,000 to build. However, the reason they are so 

cost-effective is because CubeSats ‘piggyback’ onto the launches of larger satellite or rocket 

launches. Launching a CubeSat by itself could easily cost over $100,000. Using the Poly-Pico 

Satellite Orbital Deployer (P-POD), up to three CubeSats can be carried on a rocket as a 

secondary load and launched into a low-earth orbit. 1  

 

The low-cost nature of CubeSats makes them an ideal method for NASA, as well as other non-

governmental space companies, to develop space technologies. Companies are willing to 
                                                           
1 http://www.diyspaceexploration.com/what-are-cubesats/ 

http://www.diyspaceexploration.com/what-are-cubesats/
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experiment with and test technologies they are unwilling to risk on more expensive projects on 

CubeSats. In addition, CubeSats can also be used to perform space research and observation by 

carrying a camera or scientific measurement device, such as an accelerometer or magnetometer, 

to take measurements in space.  

 

The SCU Robotic Systems Lab has designed and built several CubeSats over the last fourteen 

years. Our project continues the design of the Unspecified Payload Active Attitude Control 

Nano-satellite (UPAACN) began by a senior design team last year. The heritage of the RSL 

CubeSat program means projects are able to build upon past designs while furthering 

development of new ideas and technologies.  

 

 

1.3 Project Objectives 

 

The objective of this project is to design a fully-functioning electronic power system for the 3U 

CubeSat. The EPS must be able to power all system components, including the communications 

board, the Dallas Mastic controller, and the radio/beacon. The EPS must also be able to power an 

additional customer payload. Currently, the specific payload is unknown, so the system has been 

designed for the power needs of typical payloads based upon the experience of the RSL. 

Potential payloads include anything from a camera to scientific equipment like an accelerometer. 

The EPS must be able to sustain power during the satellite eclipse. A typical low-earth orbit 

(LEO) is 90 minutes with 60 minutes in sunlight and 30 minutes in eclipse. 

 

 

 

 

 

 

 

 

Figure 1: Low-Earth Orbit 
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 The EPS must be able to store enough power to sustain satellite operation throughout the 30 

minute eclipse without power generation. Finally, the project will experiment with a new 

technology: supercapacitors. The design of a hybrid-supercapacitor system will explore the 

potential for supercapacitors and open doors for future projects utilizing this exciting new 

technology
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Chapter 2: System Overview 

 

2.1 Electrical Components 

 

The Power System being designed is part of a much larger electrical system. In Figure 2 below 

the System Block diagram can be seen.  

 
Figure 2: System Block Diagram2 

 

Figure 2 shows all of the system components involved in operating the satellite. The green block 

in the center represents the communications board. The communications board is responsible for 

all the data collection and transmission, as well as any control systems management within the 

satellite. In order to power the components on the communications board, a 12V and 5V input 

                                                           
2 https://scholarcommons.scu.edu/handle/11123/200 

https://scholarcommons.scu.edu/handle/11123/200
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supply are required. At Santa Clara we have the equipment seen in the blue box on the right. The 

HAM Radio is for receiving data and there is a transmitter for sending commands to the satellite. 

On the bottom box is the customer payload, which will be determined as a last step of the 

process. Lastly, the purple box on the left contains the elements related to the power system. The 

Solar panels have been designed by a previous team, but the storage and distribution of that 

power is the focus of this project. 

 

2.2 Power Generation 

 

As mentioned above, the power input comes from a system of 4 solar panels. One panel is 

attached to each long side of the CubeSat frame so that while the satellite is rotating in space it 

will always be exposed to sunlight. At the max power point, each panel is able to output 10.95V 

at 280mA. Diodes are used to ensure that the panel outputting the most power is always the input 

of the circuit. 

 

2.3 Power System Overview 

 

Figure 3 shows the block diagram of the designed power system. The output of the solar panels 

is first run through the power path control. While in sunlight operation, the power path will select 

the voltage from the panels based on its higher voltage. The output of the Power Path control is 

sent to charge the supercapacitors and provide the power to the 5V and 12V Voltage regulators. 

During the eclipse, the power path will select the battery and use the stored energy to provide 

power to the circuit components. 

 

In the schematic, the supercapacitors can be seen in the lower left. In this implementation, their 

sole purpose is to power the beacon.  The Stenstat beacon pulses at 5V and up to 650mA. During 

the transmission window, the beacon may be pulsing regularly for up to 5 minutes. The 

supercapacitors have been used because of their potential in high power short duration 

applications. With the beacon drawing large spikes of power, it is believed that a supercapacitor 

could be an ideal component to fulfill this need. 

 



 

6 
 

 
Figure 3: Power System Block Diagram
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Chapter 3: Battery Management 

 

3.1 Battery Selection 

 

While the satellite is in eclipse, the system will be powered by a battery. This allows the satellite 

to continue normal operation throughout the entire orbit of the satellite, including when it is 

away from the sun. Traditionally, satellites are powered by Nickel Cadmium (Ni-Cd) batteries 

because they are more durable than other battery chemistries and have a wider operating 

temperature range, which is important in the extreme conditions of space. However, Ni-Cd 

batteries have many disadvantages, particularly in space-constrained CubeSats, because they are 

large and heavy. Over the last decade, the space industry has begun experimenting with and 

switching over to Lithium-Ion Li-Ion batteries. Although the RSL has always used Ni-Cd, we 

wanted to investigate whether or not it was time to also switch over to Li-Ion.  

 

 
 Ni-Cd  Li-Ion  

Maintenance Durable Fragile 

Nominal Cell Voltage 1.2 V 3.6/3.7 V 

Weight Larger and Heavier –  
33.84 oz 

Smaller and Lighter –  
3.5 oz 

Discharge Periodic Discharge No Periodic Discharge 

Disposal Hazardous Non-Hazardous 

Specific Energy 40-60 Wh/kg 100-250 Wh/kg 

Energy Density 50-150 Wh/L 250-520 Wh/L 

 
 

Table 1: Battery Comparison Table 
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The table above shows a comparison of the two battery chemistries. As stated before, the 

primary advantage of Ni-Cd is its durability, which is important in the harsh conditions of space. 

Li-Ion batteries would need more protective circuitry to ensure proper operation. In particular, 

Li-Ion batteries are extremely sensitive to temperature and can even catch fire in unfavorable 

conditions. However, despite this disadvantage there are many more advantages to using Li-Ion 

batteries.  

 

The nominal cell voltage of Ni-Cd is much lower at 1.2 V compared to the 3.6/3.7 V nominal 

cell voltage of Li-Ion batteries.3 This means Ni-Cd battery packs are much larger and heavier 

because not only are the individual cells heavier, but also more cells are needed to get the same 

voltage in Ni-Cd battery packs than in Li-Ion battery packs. A Ni-Cd battery pack could weigh 

up to 33.84 oz compared to a comparable 3.5 oz Li-Ion battery pack. In addition, Ni-Cd batteries 

also suffer from periodic discharge. This means the entire battery needs to be discharged before 

recharging again or it may be damaged by memory effect. Memory effect means the battery may 

‘remember’ what voltage it had been discharged to during previous cycles, and when it is at that 

point, it can suddenly lose voltage as if it had been discharged.4 When the satellite is in orbit, we 

will not be able to control or guarantee the battery will be completely discharged before 

recharging, so it is preferable to not have to worry about memory effect. Ni-Cd is also considered 

a hazardous waste because cadmium is a toxic heavy metal. This means handling and disposal of 

Ni-Cd needs to be carefully regulated and may even require a fee for proper disposal after use. 

Finally, the specific energy and energy density of Li-Ion batteries is much higher than Ni-Cd 

batteries. The specific energy of a Li-Ion battery can range between 100-250 Wh/kg while Ni-Cd 

is typically less than 60 Wh/kg.5 Similarly, the energy density of Li-Ion batteries is typically 

between 250-620 Wh/L while Ni-Cd is between 50-150 Wh/L.6  

 

After comparing the batteries, Li-Ion batteries are clearly a better choice than Ni-Cd which raises 

the question of why the RSL and the rest of the space industry have continued to use Ni-Cd 

                                                           
3 http://www.diffen.com/difference/Li-ion_vs_NiCad 
4 http://www.diffen.com/difference/Li-ion_vs_NiCad 
5 http://www.diffen.com/difference/Li-ion_vs_NiCad 
6 http://www.diffen.com/difference/Li-ion_vs_NiCad 

http://www.diffen.com/difference/Li-ion_vs_NiCad
http://www.diffen.com/difference/Li-ion_vs_NiCad
http://www.diffen.com/difference/Li-ion_vs_NiCad
http://www.diffen.com/difference/Li-ion_vs_NiCad
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batteries for so long. The reason is primarily because Ni-Cd has been thoroughly tested and 

proven to work well in space. The expensive and high-risk nature of space launches means the 

space industry is slow to incorporate new technologies into projects. Organizations would rather 

use a technology that they know will work rather than test out a new technology in order to 

maximize chances of a successful mission. However, over the last ten years more and more 

companies and CubeSat teams have begun to successfully use Li-Ion batteries.  

 

We decided it was also time for the RSL to make the switch, so we chose a 7.4 V, 2600 mAh Li-

Ion Tenergy battery for our CubeSat as shown below.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

The typical charging cycle of the Li-Ion battery from the datasheet is shown below in Figure 5. 

The graph is actually for a 4.2 V battery, but although our battery is larger it should still have the 

same behavior. There are three distinct phases to the charging of this battery. First, the battery 

fast charges up until it reaches about 90% battery charge. At that point, it slowly charges until it 

reaches the maximum battery charge where it simply maintains the voltage until used. The 

charging current stays steady at about 1 A until maximum charge is reached at which point it 

drops off to 0 A.  

 
 
 
 
 
 
 

Figure 4: Tenergy Li-Ion Battery 
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3.2 Battery Management System Comparison 
 
 
The use of Li-Ion batteries means that the selection of a battery management system needed 

careful consideration to insure the battery is properly protected. Our choice came down to three 

devices: Texas Instruments BQ24210, Texas Instruments BQ25505, and Linear Technology 

LT3652. A comparison of the three devices is shown in Table 2. The reason these three devices 

were originally considered is that all three are specifically designed for a solar input. Most 

battery management devices are not designed for solar input, so this requirement narrowed our 

choices down considerably at the outset.  

 

The next consideration in selecting a chip was temperature sensing. Li-Ion batteries are 

extremely sensitive to temperature, so temperature protection is essential in the cold conditions 

of space. Temperature sensing monitors the battery temperature and if the temperature goes 

outside of a programmable temperature range it will stop all charging and discharging of the 

battery to protect it until it is back at a safe temperature. Over-voltage protection is also 

necessary in order to prevent damaging the battery from over charging while under-voltage 

protection stops the battery from being discharged beyond what is safe for the battery. All three 

chips have temperature sensing and over-voltage protection, but only the TI25505 and LT3652 

have under-voltage protection.  

 

Figure 5: Charging Profile of Tenergy Li-Ion Battery 
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Power path is the next requirement needed for our system. Power path control is necessary in 

order to select between the solar panels and the battery as a source of power for the satellite 

system. Only the TI25505 and LT3652 had a system where power path could be easily integrated 

into the system. Therefore, the choice came down between these two chips. Finally, maximum 

peak power tracking (MPPT) is the last needed requirement. MPPT is a method to keep the 

output of the solar panels as high and as stable as possible despite varying environmental factors 

like temperature and solar irradiation. Only the LT3652 has MPPT capability, so the LT3652 has 

chosen as our battery management system.  

 

 
 
 TI24210  TI25505  LT3652 

Solar Input  

   
Temperature 
Sensing  

   
Over Voltage 
Protection  

   
Under Voltage 
Protection  

   
Power Path  

   
MPPT  

   
 
 
 
 
 
 
 
 
 

   

   

   

   

   

   

Table 2: Battery Management System Comparison 
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3.3 LT3652 Configuration 
 
 
Several changes had to be made to the LT3652 circuit in order to configure the device for our 

needs. The first change was to set up the power path control. While the system is outputting 

power from the solar panels, the day diode will turn on and power will flow directly from the 

panels into the system loads as well as through the chip to charge the battery as shown in the left-

side of Figure 6. When the satellite is in eclipse, the day diode turns off and the night diode turns 

on so power flows directly from the battery to the system loads as shown in the left-hand 

diagram in Figure 6.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Power Path Control of LT3652 Chip 
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Next, the battery management system has to be programmed to charge a 7.4 V battery. As shown 

in Figure 7, the battery charge voltage is programmed using the Feedback Voltage Divider in the 

bottom left-hand corner of the schematic. The voltage divider is programmed using these 

equations: 

   R8 = (VBAT(FLT) * 2.5 * 105)/3.3 

   R5 = (R8 * (2.5*105))/(R8 – (2.5*105)) 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Finally, the MPPT system needed to be implemented in order to produce the highest possible 

output of the solar panels. The left-hand graph in Figure 8 shows the maximum peak power point 

found at the intersection of the maximum voltage and maximum current.  A MPPT system 

strives to maintain the power as close to the peak power point as possible. MPPT works by 

monitoring the output of the solar panels and adjusting the total resistance of the solar panels in 

order to produce the maximum output.  The implementation of the MPPT in the battery 

management system is shown in the schematic in Figure 8.  

 
 
 

Figure 7: Configuration of Feedback Voltage Divider of LT3652 



 

14 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The implementation of the MPPT requires a LM234 sensor and a resistor divider. The solar cells 

the satellite will be using are Triangular Advanced Solar Cells with an open-circuit voltage of 

12.6 V, a maximum power voltage of 10.95 V and temperature coefficient of -31 mV/C.7 With 

these specifications and choosing an RSET of 100 kOhms, we can calculate the necessary 

resistance values using these equations: 

    RIN1 = –RSET • (TC • 4405) 

    RIN1/({[VMP(25°C) + RIN1 • (0.0674/RSET)]/VIN_REG} – 1) 

 
 
 
 
 

                                                           
7 datasheet 

Figure 8: Right-Hand Graph: Power Curves of Solar Panels 

Left-Hand Graph: Schematic of MPPT Implementation 
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3.4 LT3652 Simulation 
 
 
The next step was to simulate the charging cycle of a battery using the LT3652 on LTSpice as 

seen below in Figure 9.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

The LT3652 charging cycle has three distinct sections to it. The simulated circuit has begins with 

a slow charge until the current spikes to 1.0 A and the battery fast charges up until its maximum 

charge. Then the current drops down to 0 A while the battery simply maintains its voltage.  

 
 
3.5 LT3653 Demo Board Verification 
 
 
The next step was to verify operations of the LT3652 using the demo board and the actual 7.4 V 

Tenergy battery. The experimental results are shown in Figure 10. 

 
 
 
 

Figure 9: Charging Cycle Simulation of LT3652 
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The battery charging cycle matches very closely with the expected curve from the battery 

datasheet. The battery fast-charged until approximately 6.8 V which is 90% charge and slow 

charged the rest of the way to 7.4 V. The demo board skipped the slow-charge seen in the 

simulation because we configured the demo board to fast-charge by changing the jumpers on the 

board.  

Figure 10: Charging Cycle Experiential Data 
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Chapter 4: Supercapacitors 

 

4.1 Objective 

 

The Robotic Systems Laboratory (RSL) is always seeking to implement and experiment  

with new technology. In the interest of working on communication and cooperation  

between multiple satellites, the RSL is looking to use chip satellites as a cost effective means  

of launching multiple packages. Rather than an entire system contained within a U sized cube,  

a chip sat is a much smaller system consisting of a sensor, a transmitting beacon, and several  

supercapacitors for power storage. In such a system, the supercapacitors are ideal because they  

can provide a large amount of power instantaneously, which is required to power the beacon  

during transmission. Because the RSL has no experience with supercapacitor technology, the 

goal of this project was to implement a hybrid system of both batteries and supercapacitors with 

the supercapacitors being used to provide the pulse of energy to the beacon. 

 

4.2 Supercapacitor Selection 

 

The supercapacitor chosen for the system is a Maxwell PC-10 model. It is rated for 2.5V and  

10F. These numbers provide for a base voltage that can be stacked to the 7.5 required volts and  

the 10F rating ample energy storage for the system. Additionally the rectangular package as seen  

in Figure Q means that the bank can save space vertically. In terms of reliability, the Maxwell  

model is ideal because it can operate between -40° C to +70° C and has a lifespan of 500,000  

cycles. For space applications, it is made of stainless steel and hermetically sealed. 

 

 

 

 

 

 

 

 
Figure 11: Maxwell PC-10 Supercapacitor 
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4.3 Charge Management 

 

When it came to selecting a charge management chip for our supercapacitor bank our options  

were limited. Because supercapacitors are still a relatively new technology, the industry has  

yet to offer a wide variety charging technology. Ultimately, the only package to have built in  

temperature sensing was the Texas Instruments BQ24640 chip. The schematic of this circuit  

can be seen in the figure below. The temperature sensing is controlled by the 10k thermistor.  

Additionally, the feedback voltage divider and the charge current control were modified to yield  

7.5 volts and 2 amps respectively. 

 

 
 

 

 

4.4 Experimental Verification 

 

The next step was to ensure that the supercapacitor charging profile could be accurately  

replicated. In order for the supercapacitors to be a useful component they must be able to  

deliver the pulse of power over a short duration. Additionally, a power storage system that  

charged quickly during sun exposure will ensure that the beacon will be able transmit whenever  

Figure 11: BQ24640 Schematic 
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necessary. To test the supercapacitor functionality, the bank was charged fully through the circuit  

and discharged over a dummy load in order to pull the maximum power from the bank. The  

results below show that the supercapacitor bank was able to charge and discharge as shown  

by the manufacturer. Figure 12 shows the manufacturer charge profile and Figure 13 shows the 

experimental results of the testing. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12: Supercapacitor Datasheet Charge and Discharge Profiles 

Figure 13: Experiential Supercapacitor Charge and Discharge Profile 



 

20 
 

4.5 Beacon Pulsing 

 

Once the discharge profile had been verified, the final step was to confirm its ability to supply  

power to the beacon. While in orbit the satellite will have roughly 10 minutes in which to  

communicate with the ground station at Santa Clara. During this period it will be pulsing  

regularly in order transmit the data gathered from the customer payload. Without a payload yet 

selected, it was decided to test for a payload that would require a large amount of data  

transmission. A camera was chosen, meaning that the beacon would need to be pulsing regularly  

for approximately 5 minutes. To test the transmission, the fully charged supercapacitor bank  

was connected to the beacon as the sole power source and the beacon was pulsed at every five  

seconds. Under these conditions the beacon was able to pulse for over five minutes, confirming 

the viability of supercapacitors. Figure 14 below shows the experimental results of the testing. 
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Chapter 5: Voltage Regulation 

 

5.1 SEPIC Converter Selection 

 

When choosing our two voltage regulators, we primarily considered Buck-Boost and SEPIC  

DC-DC converters because these two types of converters can both step-up and step-down 

voltage, which means the same convertor can be used for both the 12 V and the 5 V regulators. 

The LT3757 convertor was chosen because it had an extremely wide input voltage range from 

3.5-36 V, meaning we will continue to be able to provide power to the satellite even when the 

battery is extremely low. Even when the battery is down to 3 V, the converters will still be able 

to boost the voltage up to 12 V and 5 V respectively.  

 

5.2 LT3757 Configuration 

 

The main adjustment made to the LT3757 converter was programming the feedback voltage 

divider to output the necessary voltage. The equations used to calculate R3 and R2 are: 

   R2 = (VBAT(FLT) * 2.5 * 105)/3.3 

   R3= (R2 * (2.5*105))/(R2 – (2.5*105)) 

Figure 15 shows the schematic of the LT3757 with R2 and R3 programmed for the 12 V output 

where R2 is 15.8 kOhms and R3 is 105 kOhms. The values had to be recalculated a second time 

for the 5 V output giving an R2 of 20 kOhms and an R3 of 42.2 kOhms.

Figure 15: LT3757 SEPIC Converter 
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Chapter 6: Board Design 

 

6.1 General Design Considerations 

 

Once the functionality of the components had been verified through the demo boards, the next 

step was to create a board layout that could be placed directly into the satellite. When beginning 

this process, there were a number of factors that would guide our design. The first and foremost 

amongst these was space within the 3U frame. The width meant that anything we designed 

would have to be within the 100mm by 100mm border. Additionally, there will be a thermal 

casing installed before the satellite is completed that will take up additional horizontal spacing.  

 

The second spatial requirement was vertical. Figure 16 below shows where existing satellite 

hardware. All of the boards are designed so that they can be stacked vertically to save space and 

provide room for the customer payload. When designing the power board, it was decided to 

make the package in two separate boards that could be stacked on top of each other. Having two 

boards allowed for all of the components to fit on the power board within the horizontal 

boundaries and also allowed the supercapacitors to be optional. Although this technology is now 

a focus of the RSL’s research, the team recognizes that this may not be a technology that future 

teams would like to use. For this reason the boards are independent and can be removed to meet 

the needs of future teams. 
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Figure 16: Hardware for Communications Board 

The last piece to notice about the existing hardware is the use of serial ports. These are not 

conventionally used to transfer power; however, they are a convention within the CubeSat 

industry. They are widely accepted because space-rated and hermetically sealed versions are 

readily available and cost effective. Additionally, they can be used to transfer data and power 

simultaneously between different system components 

 

The two figures below show the first versions of the board. Visible on the sides of the board are 

the serial ports for inputs and outputs. The power board contains the battery charge management 

as well as the two voltage regulators. The supercapacitor board is responsible for carrying the 

supercapacitor charge management and having an output directly to the beacon. 
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6.2 Power Board 

 

Figure 17 shows the layout of the power board.  

 

 
Figure 17: Power Board 
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6.3 Supercapacitor Board  

 

Figure 18 shows the board layout for the supercapacitor board.  

 

 
Figure 18: Supercapacitor Board 
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Chapter 7: Ethical and Aesthetic Considerations 

 

7.1 Stakeholder Needs 

 

Functional: Our project has resulted in the fabrication of a functional EPS board for use in a 3U 

satellite. The implementation of supercapacitors on a satellite is a new and concept in the 

Robotic Systems lab, a hybrid system including a Lithium-ion battery was designed. This way 

we can make sure the satellite will be properly powered by the battery in case of unforeseen 

failure in the supercapacitiors. 

Financial: Supercapacitors have the potential to be a cheaper and more efficient option for 

energy storage on CubeSats. The cost of a supercapacitor bank where each individual 2.7V 

350uF capacitor is approximately $11 is cheaper or comparable to most lithium ion battery 

packs, which start at approximately $44. They also can be charged and discharged with no 

deterioration much longer than batteries, meaning they can last longer and have to be replaced 

less.  

Technical: We completed the first iteration of the EPS board design. We have left thorough 

explanation and documentation so future completing groups can make any necessary changes 

and implement the design. Our board will be fully functional for future implementation in a SCU 

CubeSat. We will also be able to provide data to potential investor looking to launch a payload to 

prove our satellite will be powered in space.  

Societal: Supercapacitors are a new and relatively unexplored electronic component. People are 

still experimenting with them and figuring out how to maximize the potential of this technology. 

Our project will add this exploration by determining whether or not supercapacitors can be useful 

to power CubeSats elements. Additionally, by designing a power board for a small system 

satellite, we are participating in the ever changing and expanding field of extraterrestrial 

research. 

 

7.2 Ethical Considerations 

Considering the ethical issues surrounding small spacecraft like CubeSat satellites is important 

because of the potential negative effects spacecraft can have on the space environment. 

Exploration of outer space is a tremendous opportunity to advance and push the limits of human 
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knowledge. It allows us to test devices in conditions impossible to replicate on earth. We can 

learn more about the current conditions of our own planet as well as the formation of our 

universe through mechanisms like advanced imaging, magnetic sensing, and radiation testing. 

The harsh conditions of space force engineers to innovate and test the boundaries of technology 

while designing technology. Finally, space and the potential for knowledge it holds is an endless 

supply of awe and inspiration for both engineers and laymen alike. Unfortunately, all important 

resources like space are also in danger of exploitation. Space conservation is incredibly 

important to ensure the continuing ability of researchers to explore and learn from outer space, 

and it is important that we consider and attempt to prevent all possible negative side-effects of 

launching a satellite.  

 

The importance of communications satellites in modern technologies like cell phones, TV, radio, 

and GPS has led to severe overcrowding in the geo-synchronous orbit. The geo-synchronous 

orbit is especially important for these applications because satellites in this orbit do not move 

relative to the earth. This means geosynchronous satellites can be used for commercial and 

military communications.8 Satellites in other orbits will move in and out of range as they orbit 

around the earth. The limited space in the geo-synchronous orbit has created competition 

between countries to determine who gets space in the orbit for their satellites. This is often 

exacerbated by the fact that many countries would prefer to have their own satellites rather than 

have to rely on data from other countries satellites. To partially solve this problem, the FCC has 

reduced the minimum required distance between satellites in order to fit more. However, this 

increases the danger for collision and interference between satellites, which could seriously 

affect communications around the world.9  

 

Although the crowding issue is not as dire in the low-earth orbit (LEO) as it is in the geo-

synchronous, it is still overcrowded and it will only get worse. The LEO is the orbit of choice for 

non-communication satellites and spacecraft built by governments, companies and universities 

including the CubeSat we are designing. Currently over 800 satellites are orbiting the earth 

performing research, testing technologies, and performing other research and commercial 

                                                           
8 http://www.sciencedaily.com/articles/g/geosynchronous_orbit.htm 
9 http://onlinelibrary.wiley.com/doi/10.1029/EO065i038p00707-01/abstract 

http://www.sciencedaily.com/articles/g/geosynchronous_orbit.htm
http://onlinelibrary.wiley.com/doi/10.1029/EO065i038p00707-01/abstract
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tasks.10 The high numbers of satellites create the danger of collisions as well as interference with 

other spacecraft, experiments, and communications. Collisions and interferences could result in 

failed experiments or even inaccurate data. This is a problem because the high costs of building 

and launching spacecraft means every spacecraft represents a serious investment by governments 

and commercial companies. Space crowding can seriously inhibit the pursuit of knowledge if it 

is not controlled.  

 

The crowding issue is further exacerbated by the increased amount of space junk surrounding the 

Earth. Satellites and spacecraft are permanently under fire from debris like abandoned satellites 

and broken components left behind by previous missions. Currently, NASA estimates there are 

over 500,000 pieces of debris orbiting around the Earth.11 The fast speeds each piece is traveling 

at means even small pieces can do serious damage to spacecraft. Advanced spacecraft have the 

ability to maneuver to avoid debris but smaller satellites like our CubeSat are vulnerable to 

damage, which would likely result in leaving behind even more debris.12  

   

Overcrowding and space debris have the potential to inhibit future space exploration and travel. 

Measures are being taken to destroy the larger and more dangerous pieces, but it is near 

impossible to clear space of all the debris we have left behind.13 Every mission needs to be 

carefully considered to make sure the potential for quality research outweighs the possibility of 

further contributing to the pollution of space. Debris left behind by our spacecraft could go on to 

injure a larger and more important spacecraft or space stations carrying important equipment or 

personnel. It is our ethical duty as a design team to make sure the structure of the CubeSat is as 

strong as possible to reduce the risk of leaving something behind. Much of the debris is 

comprised of satellites that were simply abandoned in space. We instead plan on our satellite 

burning up in the atmosphere to prevent adding to the debris. It is also important that we make 

sure our CubeSat is being used in a constructive experiment that justifies launching the satellite 

and outweighs the risk of polluting outer space.  

 

                                                           
10 http://onlinelibrary.wiley.com/doi/10.1029/EO065i038p00707-01/abstract 
11 http://www.nasa.gov/mission_pages/station/news/orbital_debris.html#.UpwnzMSsiSo 
12 http://www.nasa.gov/mission_pages/station/news/orbital_debris.html#.UpwnzMSsiSo 
13 http://www.nasa.gov/mission_pages/station/news/orbital_debris.html#.UpwnzMSsiSo 

http://onlinelibrary.wiley.com/doi/10.1029/EO065i038p00707-01/abstract
http://www.nasa.gov/mission_pages/station/news/orbital_debris.html#.UpwnzMSsiSo
http://www.nasa.gov/mission_pages/station/news/orbital_debris.html#.UpwnzMSsiSo
http://www.nasa.gov/mission_pages/station/news/orbital_debris.html#.UpwnzMSsiSo
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CubeSats built by universities are typically contracted to carry a payload for NASA or 

commercial companies. We currently do not know what payload our satellite will carry when 

launched. This situation creates several potential ethical dilemmas for our team as we navigate 

the customer-client dynamic. We realize that some satellites are used for military purposes and 

technology exists to weaponize satellites in LEO. However, our goals for this project are solely 

to advance scientific research for civilian purposes. It is an important goal for our team to get our 

satellite launched, but it is even more important that we make sure our satellite is not used in a 

way that endangers life. If at any point the goal of the project is no longer simply to advance 

human knowledge then as a team we will have to seriously consider ending our research and 

grounding our satellite.  

 

We also have several ethical responsibilities to the customer that will be depending upon our 

product in order to conduct research. It is our duty to supply a functional product to our 

customer, and it is important that we are transparent about any limitations of our system. It is 

unethical to omit information about potential failures of our satellite in order to ensure our 

satellite is launched. If we failed to inform the customer about any limitations and it fails in 

space, than we would be responsible for the failed mission. It could also damage the relationship 

between the contractor and our university and hurt the ability of future satellite teams to get their 

projects launched. We also have an obligation to make sure our satellite is safe to handle. The 

satellite should only be handled by qualified individuals, but it is still important to provide 

directions on handling to reduce possibilities of damage to the satellite or injury to the person. 

 

Another important aspect of the project is ensuring secure communications from our satellite to 

ground control. The data transmitted from our satellite needs to be kept confidential and 

protected from interference or tampering. Confidentiality is important because it could be an 

important experiment for our contractor that needs to be kept from competitors prior to 

publication. If data is interfered with, it could result in wrong or misleading conclusions being 

drawn from our experiment which could hinder advancements of technology and knowledge. 

Failure to provide secure communications could easily result in a failed mission and damage the 

reputation of Santa Clara’s satellite program.  
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My team is specifically designing the electronic power system of the satellite. There is a lot of 

mechanical work left to do so we will need another design team next year in order to complete 

the project. We have many of the same ethical obligations to this future team that we have with 

our contractor. This future team will depend upon our design to power their satellite. It will 

likely be a team completely comprised of mechanical engineers so it will be difficult for them to 

detect and fix possibly failures of our system. It is again very important to not hide any 

limitations and failures of our power system. Even if these limitations do not affect the current 

design it could be reused for future projects with different specifications. It is therefore important 

for future teams to have plenty of information available to them so their projects do not fail 

because of ours.  

 

7.3 Aesthetics of Senior Design 

 

The end goal of our project is to create a finished CubeSat which will be launched by an outside 

company or contractor such as NASA to carry a payload into space. Aesthetics are important 

because we must convince a contractor that our satellite will not fail in space. Contractors 

looking at our satellite will primarily be technical people. The design must be simple and 

functional without needing any sort of user interface for non-technical users. The design should 

showcase elements of the satellite important to the company, like the design of the connections 

between the satellite and the payload. The external structure of the satellite is open so contractors 

can see into the satellite and see the circuit boards and components. The boards and components 

must therefore be organized in a logical, non-cluttered manner. The components must be 

properly attached with organized and secure wire connections. The thermal casing and other 

protective equipment must look trustworthy and perform properly.  

 

The CubeSat will be very utilitarian due to the harsh conditions in space and the limited space on 

the satellite itself. Our design is streamlined as much as possible to use the minimum number of 

components because of the space constraints. Fortunately, in terms of aesthetics, the most elegant 

design is often the simplest one. By streamlining our design, the aesthetics of the satellite is also 

improved by reducing the clutter and organizing the components in a logical manner. The harsh 
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conditions of space will also require protective casing around electrical components like the 

battery to prevent malfunctioning. Simple measures like making sure the casing of the 

components match the material used for the satellite structure will not affect functionality of the 

case but will improve the aesthetics. Extreme care should also be taken in the connections 

attaching the casing to the satellite and the wire connections between boards. Even if the 

connection is secure yet does not look like it is, people will not trust it and will doubt the 

functionality of the satellite.



 

32 
 

Chapter 8: Conclusion 

 

Using the demo board components, the functionality of the circuit has been proven. The solar 

panels will provide ample power and the battery and supercapacitor bank both have the required 

energy storage to make the circuit operational during eclipse. There is a board design in place to 

implement the circuit in the satellite package. This being said, there still remains a vast amount 

of work to be done on the power system. 

 

Though the boards have been designed, there are still a wide range of tests that must be 

performed on the system to ensure that they not only function as intended, but are also able to 

withstand some of the harsh conditions and cycling requirements demanded by the mission. The 

first step will be to ensure that the circuit is in fact functional and that all of the connections have 

been made to ensure that power is delivered cleanly and efficiently. Once this testing and any 

necessary revisions have been made, the final testing process will be conditional testing which 

will have to done at the NASA Labs. 

 

These tests will come as new teams continue to work on this CubeSat package and understanding 

that this work may change the system requirements this team is confident that it has delivered a 

system that is not only functional, but malleable as well. By incorporating new storage 

technologies in Li-ion batteries and supercapacitors, the team has modernized and enhanced the 

systems storage capabilities. By using SEPIC converters as the voltage regulators, the system can 

be easily modified to accommodate changing load needs in the satellite’s electronic components. 

Lastly, the team has proven that a supercapacitor bank can power a Stensat beacon, opening the 

door to future research into the field of small system chip satellites.  
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Appendix A: LT3652 Datasheet  
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Appendix B: LT3757 Datasheet  
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Appendix C: Tenergy Battery Datasheet  
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Appendix D: Maxwell PC10 Datasheet  
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Appendix E: TI BQ24620 Datasheet  
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Appendix F: Power Board BOM 

Item Qty 
Reference - 

Des Part Description Manufacturer, Part # 
               REQUIRED CIRCUIT COMPONENTS 

1 2 C2,C3 CAP., X7R, 4.7uF, 50V, 10%, 1210 MURATA, GRM32ER71H475KA88L  

2 1 C4 CAP CER 1UF 50V 10% X7R 0805 Samsung,  CL21B105KBFNNNE 
3 1 C6 CAP., X5R, 100µF, 10V, 20%, 1210 TAIYO YUDEN, LMK325BJ107MM-T 

4 1 C7 CAP., X7R, 10uF, 10V, 10%, 0805 MURATA, GRM21BR71A106KE51L 

          
6 2 D1,D2 DIODE SCHOTTKY 40V 1A SMB Fairchild, MBRS140 

7 1 D5 DIODE SCHOTTKY 40V 1A SMB Fairchild, MBRS140 

8 1 L1 INDUCTOR POWER 10UH SHIELD SMD 
Bourns,  
SRP7030-100FM 

9 1 R1 RES., CHIP, 1MEG, 1/16W, 1%, 0402 VISHAY, CRCW04021M00FKED 

10 1 R4  RES 137K OHM 1/16W 1% 0402 SMD VISHAY, CRCW0402137KFKED 

    R5 RES 21.0K OHM 1/16W 1% 0402 SMD Yageo, RC0402FR-0721KL 

11 2 R6 RES., CHIP, 100K, 1/16W, 1%, 0402 VISHAY, CRCW0402100KFKED 

12 1 R7 RES., CHIP, 0.05 OHM, 1/2W, 1%, 1206 IRC, LRC-LR1206-01-R050-F 
13 1 R10 RES 619K OHM 1/10W 1% 0603 SMD Vishay, CRCW0603619KFKEA 

14 1 R11 RES 422K OHM 1/10W 1% 0603 SMD Panasonic, ERJ-3EKF4223V 

15 1 R12 RES 0.1 OHM 1/2W 1% 1206 Stackpole, CSR1206FKR100 

16 1 U1  
 MULTI-CHEMISTRY 2A BATTERY CHARGER FOR 

SOLAR POWER LINEAR TECH.,LT3652EDD 

1 1 C1 CAP CER 10UF 50V 10% X5R 1206 Samsung, CL31A106KBHNNNE 

3 2 C8,C9 CAP, CHIP, X7R, 0.022µF, ±10%, 16V, 0402 AVX, 0402YC223KAT2A 

4 1 D3 LED, RED Lite-On, LTST-C191KRKT 

5 1 D4 LED, GREEN LITE-ON, LTST-C190KGKT 

6 0 D6 DIODE SCHOTTKY 40V 1A SMB Fairchild, MBRS140 

7 2 R2,R3 RES., CHIP, 5.1K,1/4W, 1%, 1206 VISHAY, CRCW12065K10FKEA 

8 1 R8 RES 20 OHM 1/16W 5% 0402 SMD Yageo, RC0402JR-0720RL 

9 1 R9 RES 0.0 OHM 1/16W JUMP 0402 SMD 
YAGEO,   
RC0402JR-070RL 

      THERMISTOR NTC 10 5% RADIAL Vishay, NTCLE100E3109JB0 

    RSET RES 910 OHM 1/8W 1% 0805 SMD Yageo, RC0805FR-07910RL 
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Item Qty Reference Part Description Manufacturer / Part # 

    
REQUIRED CIRCUIT 
COMPONENTS:     

1 1 C5 
CAP., X7R, 6.8µF, 50V, 20% 
1812 TDK, C4532X7R1H685M 

2 3 C16,C15,C17 
CAP CER 100UF 6.3V 20% X5R 
1206 Taiyo, JMK316BJ107ML-T 

3 1 C14 
CAP., X7S, 10µF, 50V, 20% 
1210 

Taiyo Yuden, 
UMK325BJ106MM-T 

4 1 C13 
CAP CER 4.7UF 10V 10% X5R 
0805 

Taiyo Yuden, 
LMK212BJ475KD-T 

5 1 C12 
CAP., X7R, 10nF, 50V, 10% 
0603 TDK, C1608X7R1H103K 

6 1 C28 
CAP., C0G, 100pF, 50V, 5% 
0603 TDK, C1608C0G1H101J 

7 1 C11 
CAP., X7R, 0.1uF, 25V, 10% 
0603 TDK, C1608X7R1E104K 

8 1 D7 DIODE, PDS1045, PowerDI-5 Diodes Inc., PDS1045-13 

9 2 L2,L3 
INDUCTOR POWER 6.8UH 
SHIELD SMD Bourns SRP7030-6R8FM 

10 1 Q1       
N-Mosfet, Si7850DP Power-Pak 
So-8 VISHAY, Si7850DP-T1-E3 

11 2 R15 
RES., CHIP, 42.2K, 1/10W, 1%  
0603 

VISHAY, 
CRCW060342K2FKEA 

    R17 
RES 105K OHM 1/10W 1% 
0603 SMD Yageo, RC0603FR-07105KL 

12 1 R18 
RES 15.8K OHM 1/10W 1% 
0603 SMD Yageo, RC0603FR-0715K8L 

13 1 R14 
RES 187K OHM 1/10W 1% 
0603 SMD Yageo, RC0603FR-07187KL 

14 1 R13 
RES., CHIP, 100K, 1/10W, 1%  
0603 

VISHAY, 
CRCW0603100KFKEA 

15 1 R19 
RES., CHIP, 0.01Ω, 1W, 1%, 
0815 

THIN FILM, RL3720WT-
R010-F  

16 1 R16 
RES., CHIP, 10.5K, 1/10W, 1%  
0603 

VISHAY, 
CRCW060310K5FKEA 

17 1 R27 
RES., CHIP, 10K, 1/10W, 5% 
0603 

VISHAY, 
CRCW060310K0JNEA 

18 1 U1  I.C., LT3757EDD, DFN 10 (3X3)  
LINEAR TECH., 
LT3757EDD#PBF 

1 1 C10 
CAP CER 4.7UF 16V 10% X5R 
0805 

Samsung, 
CL21A475KOFNNNE 
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Item Qty Reference Part Description Manufacturer / Part # 

    
REQUIRED CIRCUIT 
COMPONENTS:     

1 1 C19 CAP., X7R, 6.8µF, 50V, 20% 1812 TDK, C4532X7R1H685M 

2 3 C22, C23, C24 
CAP CER 100UF 6.3V 20% X5R 
1206 Taiyo, JMK316BJ107ML-T 

3 1 C21 CAP., X7S, 10µF, 50V, 20% 1210 
Taiyo Yuden, UMK325BJ106MM-
T 

4 1 C20 
CAP CER 4.7UF 10V 10% X5R 
0805 Taiyo Yuden, LMK212BJ475KD-T 

5 1 C26 CAP., X7R, 10nF, 50V, 10% 0603 TDK, C1608X7R1H103K 

6 1 C27 CAP., C0G, 100pF, 50V, 5% 0603 TDK, C1608C0G1H101J 
7 1 C25 CAP., X7R, 0.1uF, 25V, 10% 0603 TDK, C1608X7R1E104K 

8 1 D8 DIODE, PDS1045, PowerDI-5 Diodes Inc., PDS1045-13 

9 2 L5,L6 
INDUCTOR POWER 6.8UH SHIELD 
SMD Bourns, SRP7030-6R8FM 

10 1 Q2   
N-Mosfet, Si7850DP Power-Pak 
So-8 VISHAY, Si7850DP-T1-E3 

11 2 R25,R23 
RES., CHIP, 42.2K, 1/10W, 1%  
0603 VISHAY, CRCW060342K2FKEA 

12 1 R26 
RES., CHIP, 20.0K, 1/10W, 1%  
0603 VISHAY, CRCW060320K0FKEA 

13 1 R20 
RES 187K OHM 1/10W 1% 0603 
SMD Yageo, RC0603FR-07187KL 

14 1 R21 
RES., CHIP, 100K, 1/10W, 1%  
0603 VISHAY, CRCW0603100KFKEA 

15 1 R24 RES., CHIP, 0.01Ω, 1W, 1%, 0815 THIN FILM, RL3720WT-R010-F  

16 1 R22 
RES., CHIP, 10.5K, 1/10W, 1%  
0603 VISHAY, CRCW060310K5FKEA 

17 1 R28 RES., CHIP, 10K, 1/10W, 5% 0603 VISHAY, CRCW060310K0JNEA 
18 1 U1  I.C., LT3757EDD, DFN 10 (3X3)  LINEAR TECH., LT3757EDD#PBF 

1 1 C18 
CAP CER 4.7UF 16V 10% X5R 
0805 Samsung, CL21A475KOFNNNE 
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Appendix G: Supercapacitor BOM 

 

 

 

Part Designator Qty Description 

Required Circuit Components 

Q4, Q5  2 N-channel MOSFET, 30 V, 12 A, PowerPAK 1212-8, Vishay-Siliconix, Sis412DN 

D1 1 Diode, Dual Schottky, 30 V, 200 mA, SOT23, Fairchild, BAT54C 

D2 1 Schottky Diode, 40V, 5A, SMC, ON Semiconductor, MBRS540T3 

D3, D4 2 LED Diode, Green, 2.1V, 10mΩ, Vishay-Dale, WSL2010R0100F 

RSR 1 Sense Resistor, 10 mΩ, 1%, 1 W, 2010, Vishay-Dale, WSL2010R0100F 

L 1 Inductor, 6.8 mH, 5.5A, Vishay-Dale IHLP2525CZ 

C8, C9, C12, C13 4 Capacitor, Ceramic, 10 mF, 35 V, 20%, X7R 

C4, C5  2  Capacitor, Ceramic, 1 mF, 16 V, 10%, X7R 

C7 1 Capacitor, Ceramic, 1 mF, 50 V, 10%, X7R 

C1, C6, C11  3 Capacitor, Ceramic, 0.1 mF, 16 V, 10%, X7R 

C2 1 Capacitor, Ceramic, 2.2 mF, 50V, 10%, X7R 

Cff 1 Capacitor, Ceramic, 22 pF, 35V, 10%, X7R 

C10  1 Capacitor, Ceramic, 0.1 mF, 35V, 10%, X7R 

R1 1 Resistor, Chip, 105 kΩ, 1/16W, 0.5% 

R2 1 Resistor, Chip, 270 kΩ, 1/16W, 0.5% 

R7 1 Resistor, Chip, 100 kΩ, 1/16W, 0.5% 

R8 1 Resistor, Chip, 14 kΩ, 1/16W, 0.5% 

R9 1 Resistor, Chip, 9.31 kΩ, 1/16W, 1% 

R10 1 Resistor, Chip, 430 kΩ, 1/16W, 1% 

R11 1 Resistor, Chip, 2 Ω, 1W, 5% 

R13, R14 2 Resistor, Chip, 100 kΩ, 1/16W, 5% 

R5 1 Resistor, Chip, 100 Ω, 1/16W, 0.5% 

R6 1 Resistor, Chip, 10 Ω, 0.25W, 5% 
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