Santa Clara University
Scholar Commons

Computer Engineering Senior Theses Engineering Senior Theses

6-6-2013

Eventity : an android-based planning application

Bryson Lam
Santa Clara University

Jeft Matsunaga

Santa Clara University

Matt Tu

Santa Clara University

Follow this and additional works at: https://scholarcommons.scu.edu/cseng senior

b Part of the Computer Engineering Commons

Recommended Citation

Lam, Bryson; Matsunaga, Jeff; and Tu, Matt, "Eventify : an android-based planning application" (2013). Computer Engineering Senior
Theses. 2.
https://scholarcommons.scu.edu/cseng_senior/2

This Thesis is brought to you for free and open access by the Engineering Senior Theses at Scholar Commons. It has been accepted for inclusion in

Computer Engineering Senior Theses by an authorized administrator of Scholar Commons. For more information, please contact rscroggin@scu.edu.

https://scholarcommons.scu.edu?utm_source=scholarcommons.scu.edu%2Fcseng_senior%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.scu.edu/cseng_senior?utm_source=scholarcommons.scu.edu%2Fcseng_senior%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.scu.edu/eng_senior_theses?utm_source=scholarcommons.scu.edu%2Fcseng_senior%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.scu.edu/cseng_senior?utm_source=scholarcommons.scu.edu%2Fcseng_senior%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=scholarcommons.scu.edu%2Fcseng_senior%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.scu.edu/cseng_senior/2?utm_source=scholarcommons.scu.edu%2Fcseng_senior%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:rscroggin@scu.edu

Santa Clara University
DEPARTMENT of COMPUTER ENGINEERING

Date: June 7, 2013

[HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISION
BY

Bryson Lam, Jeff Matsunaga, and Matt Tu

ENTITLED

Eventify: An Android-based Event Planning Application

BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF

BACHELOR OF SCIENCE IN COMPUTER ENGINEERING

%SIS ADVJSOR
?‘A» DR

DEPARTMENTCHAIR 6

Eventify: An Android-based Event Planning Application

by

Bryson Lam, Jeff Matsunaga, and Matt Tu

SENIOR DESIGN PROJECT REPORT

Submitted in partial fulfillment of the requirements
for the degree of
Bachelor of Science in Computer Engineering
School of Engineering
Santa Clara University

Santa Clara, California

June 6, 2013

1. Abstract

One of the common problems with social networking is the ability to plan out an event.
Many applications available today simply provide for a broad or narrow audience of invitees. These
tools also have the additional problem of being flooded with spam, and content with little interest to
its users. To remedy this issue, we devised a new tool, Eventify.

Eventify is an Android based application that potentially will make creating events and
bringing groups of people together more feasible. We built this application with two main design
constraints in mind: The application runs solely via text messaging, without a centralized database
and also without use of the internet. In this paper, we researched into the functionality and the
architecture of this application, as well as test results and the development process of the
application.

Our implementation of the application shows that creating a social-based system architecture
is possible without use of the internet or use of a centralized database, which is unique to our
application. We created a self-sustaining application that can run without support or maintenance
costs, provided that all involved users have an Android device and/or text messaging capabilities.
The application itself is presented in a straightforward manner; functionality of the application is
apparent, and there is no excess flashiness in the application. The application relies on file storage
within the phone itself to function: the text files created and handled by the application, however,
are lightweight and typical use of the application takes up no more than 1MB of space on the
device.

Eventify is a lightweight, decentralized application that makes event planning and friendly
gatherings less troublesome to handle. While there are solutions that have been created for the
purpose of event planning, Eventify was successfully implemented to require no support or
maintenance costs and run solely via text messaging.

2. Acknowledgements

We would like to extend our thanks to our faculty advisor, Joanne Holliday. With her advice
and guidance, our team was able to successfully produce a working product that achieved certain
goals that we aimed to produce.

3. Table of Contents

I 41511 - T PSRRI 3
2. ACKNOWIBAGEMENTS ...ttt bbb bbb 3
K 1= o] (3o B @0 01 (=T o1 £ OR 4
O =1 o] L) o OSSR 5
ST a1 oo 1T 4 o] o OSSOSO 5
5.1: ProbIem STALEIMENTccviiiieie ettt bbb ne e 5
LTIV =TT T = T o Y2 SRS 7
TN I (= o 0T g T=T o] (USSR 7
6.2: CONCEPLUAL MOGEL ...t re e 8
R T O Ll O £ T TR PP TR 9
6.4: System Sequence/ACtiVity DIAgramcccccveiieiieie e 11
6.5: TEChNOIOGIES USEcuviiiieiicie ettt ettt te et enteenaesneennas 11
6.6: System Architecture/Design Rationalecccooveiviiiiieii i 12
B.7: SOCIBTAI ISSUEBS ...ttt e et et esne e te et e e neesbeeneeaneenes 13
6.87 PrOJECE RISKS. ...ttt bbbttt b ettt ene s 15
LCIRS R 1151 o - T o SRR 15
B.10: TEST RESUITSvveveeeeee ettt e e e se et ete et esne e teeneesneenneeneenneenrs 16
6.11: Development TIMEIINEo e 16
6.12: USEI IMANUAL ..ottt esne e te et e s e nneeneenneenes 17
0 0] 13 [3 LSS 18
B APPENTIX ..ttt bbb bbbttt bbb neas 18

4. Table of Figures

Figure 6.2.1: Home feed page MOCKUP.ccviieiieie et 8
Figure 6.2.2: EVENT CrEALION PAGE.oviieiiieiieiieieie sttt sttt ettt sn bbb b ere s 8
Figure 6.3.1: Use case diagram for NOStS and QUESTS.coveieiierieieiesieseses e 9
Figure 6.4.1: The app flow of EVENLITY........cooiiii e 11
Figure 6.6.1: System Architecture and Communication Diagram.cccceeeevveieienencienennnns 12
Figure 6.11.1: Gantt Chart for Fall QUAIET.c.cooveiiiie e 16
Figure 6.11.2: Gantt Chart for Winter QUAIET.cocvoviiiiieie e 17
Figure 6.11.3: Gantt Chart for Spring QUAIEN...........c.ccveiiiieeie e 17

5. Introduction

5.1: Problem Statement

Event planning is a difficult task that can require extensive communication between all
participants. Though social networking provides a good medium for communicating, it also has
other features with can become distracting in organizing an event smoothly. In addition to this,
reaching those outside of the social network can also become a problem as it usually leaves them
out of the group. With the advancements made in technology over the past decade, the tools to
coordinate events are much more readily available, however, there are still problems in creating a
more mainstream method in doing so.

The method for organizing small gatherings proves to be more trouble than necessary.
Communication and planning between two people via text message is simple and easy, but when
more people are added to the group, problems begin to arise. Text messaging was originally
developed as a form of communication between two people, and with the added functionality of
group chats, text messaging became the most efficient way to plan the details of an event within
a small group. Although this made the communication aspect easier, agreeing on a date and time
was still just as difficult as before. Many factors may limit the ability to effectively plan an event
such as a guest failing to respond, difficulty in tracking the messages where guests state their
availability, and problems associated with taking everyone’s availability and choosing a date and
time for the event. As the number of people in the group grows to about 5 or more, using text
messages as a means to plan an event falls apart.

When the size of a group becomes too large, text messaging fails as a method of planning
an event, and other technologies can be utilized. Virtual social networks have become an integral
part of human interaction in the 21st century. Some of these types of social networks recognize
that although their technology connects people faster and easier than before, the need for
physical human interaction is still necessary. To further their business, these companies created
products that help people to plan their events. The most widely used event app for planning
medium-to-large-scale events is the Facebook events app. By giving the user abilities, such as

5

updating and viewing the guest-list in real-time, listing the event details, and allowing comments,
the app does a great job of assisting in the organization of events. However, people use the app in
ways that it was not intended to be used.

Facebook as a social network has become a somewhat impersonal one. Connections can

be made between any two people, whether or not they know each other in real-life and the
number of acquaintances on a user’s friend list vastly outnumbers the amount of friends the user
interacts with on a regular basis. As a result, users have realized that because of the way
“friends” work on Facebook, the events app can be a method of marketing. Often times, users
will have event invites that can be considered spam. Such invites include surveys, contests, and
other forms of advertisement. These spam invites are the largest problem with the Facebook
events app because it contributes to a decreased user satisfaction of the app.
Although the current solutions of event organization provide the basic functionality needed,
these solutions do not solve all the problems associated with event planning. The system that
currently handles most of the medium to large-scale events is filled with spam, while the scheme
for small-scale events makes the coordination of details challenging. Our solution, Eventify, will
be scalable enough to handle events of all sizes, and remedy the problems that exist with the
current solutions. The proposed system will:

e Allow the event creator to invite other people to the event

e Allow the event to be either private or open-invite

Coordinate the time and day of an event based on polls of the guests’ availability and
preference (if specified by the event creator)

Coordinate the location of the event based on polls (if specified by the event creator)
Links to a map of the location

Coordinate carpooling (if specified by the event creator)

Provide all guests with real-time updates to the guest-list

Send notifications when details are changed or when an invite is received

The most important triumphs of this system will be the advantages associated with
hosting the solution on a mobile platform. The event creator would be able to access all the
features via a smartphone and all the event invites and notifications will be routed based on
mobile numbers. Since phone numbers are not treated in the same manner as “friends” on
Facebook, communication via phones is more personal than communication through Facebook,
so spam or advertisement “events” will not be an issue. Eventify will provide an easy-to-use yet
sophisticated solution to address the issues of event planning. The success of the app will be
determined by the amount of frequent users and user satisfaction.

6. Main Body

6.1: Requirements

The requirements of the project specify the characteristics of the app. These requirements
come in three forms: functional requirements, non-functional requirements and design
constraints. Functional requirements define the specific actions that the app must be able to
perform, non-functional requirements define what qualities the app must possess, and design
constraints are requirements that limit the way the app can designed and implemented. Based on
our vision of the application, we have identified the following functional requirements, non-
functional requirements and design constraints:

Functional Requirements

The application:
e Must allow users to create a detailed event
e Allows users to invite other people to their event
e Is scalable to handle events of all sizes

Non-Functional Requirements

The application:
e should be easy to navigate through
e Functionality should be clear

Design Constraints

The application:
e Is built for Android 4.1.1 or higher
e Does not use a centralized server or database
e Does not require an extensive user registration

6.2: Conceptual Model

Based on the requirements, we have chosen these pictorial models to represent how the
application appears from the user’s perspective. This will help to ease understanding of concepts
presented in the remainder of this document.

! Eventily { E Your Everts

Ewers Mame: Hresan's Ginhday pertd
“reabe buent Localicre Yillas 9204
Slart Cale: 511513
¥our Events Stk Time: S0
GLEETR
Rrpsnn LamsrRIEy 718 1475
Aot B atsunagad+] S0 o4 13 E
[TR R R

dacamrirg Lverts

Ereei: Man Senici Desige allerparty
| nzaien |
Start Cadr:
start |ime:
Huesis
Qs Laarn (A0 T20-1425
L2 Al g ad 1EIETI0TS
Fdar TisA08 BFR311R

Figure 6.2.1: Home feed Figure 6.2.2: Event
page mockup. creation page.

6.3: Use Cases

Create an Event

Lo\

r

View an Event

Accept/Decline an Invitation >

to an Event

\

Host Guest

L

Invite People to an Event

Delete an Event

Figure 6.3.1: Use case diagram for hosts and guests.

With the above requirements in mind, we have identified two main user groups: hosts and
guests, and five main functions that the users will be able to perform. Hosts will be able to create
events, invite people to events, and delete events; guests will be able to accept or decline event
invitations, and both types of users should be able to view events that they are associated with.

Creating an Event

Actor: Host

Goal: Create an event

Preconditions: Host is at the app homepage (Figure 3.1)

Postconditions: Host has created an event and is ready to invite guests

Scenario:
1. Host selects the “Create” button from the homepage and is taken to the event

creation page (Figure 3.2)

2. Host specifies the event title, location, date, time, and guests to be invited
3. Host selects the “Create Event” button

Exceptions: N/A

View an Event
Actor: Host or Guest
Goal: View the details of an event
Preconditions:
e Event already exists
e User is at the app’s homepage (Figure 3.1)

Postconditions: User has navigated to the desired event page (Figure 3.3)
Scenario:

1. The user navigates to the “Your Events” page if they want to view events that

they are the host of, or the “Upcoming Events” page if they are the guest of an
event.

Exceptions: N/A
Joining/Declining an Event
Actor: Guest
Goal: Join/Decline an event invitation
Preconditions:
e User is at the app homepage (Figure 3.1)
e User has been invited to an event by a host
Postconditions: User is on the guest list
Scenario:
1. User views the details of the event he/she wants to attend
2. User clicks on the appropriate “Attending,” “Not Attending,” or “Maybe
Attending” option.
Exceptions: N/A
Deleting an Event
Actor: Host
Goal: Delete an event
Preconditions: The event that the host wants to delete must exist

10

Postconditions: The event is deleted and notifications are sent out to all invitees

Scenario:

1. User navigates to the event page that he/she wants to delete (Figure 3.3)

2. User selects the “Delete Event” option
3. User confirms the deletion of the event

Exceptions: N/A

6.4: System Sequence/Activity Diagram

—» Home Page

!

Upcoming
Your Events e
Create
Event Page
Delete
Event

No

Event
Created

Event
Deleted

Respond to
Event Invite

Figure 6.4.1: The app flow of Eventify.

6.5: Technologies Used

e Android Software Development Kit - Since our application is built for Android devices,
we must be developed using the software development kit. Specifically, we used the
Eclipse program as it was free and is the universally accepted medium for app

development.

e Java: The language used to code Android applications.
e XML.: Android applications consist of XML layout files.

11

Evort Crontor

(Sorver)

Figure 6.6.1: System Architecture and Communication Diagram.

6.6: System Architecture/Design Rationale

Since our app requires communication between Android devices, we are required to have
a network topology. In this topology, each node is an Android device with our application
installed, and each link represents the ability for the nodes it connects to communicate. We use
each device’s phone number as the address of the device, so in order for a node to communicate
with another node, it needs to have the phone number associated with the specified node. With
all things considered, our network is a peer-to-peer network, but not all nodes will have links to
all other nodes.

The rationale behind the peer-to-peer network is that we want each device to be able to be
a server and a client. Since any device should be able to create an event, the event creator should
become the server for that event; that is, all messages must be routed through the event creator.
Additionally, while creating any event, any device should be able to invite any other device to its
event provided it knows the other device’s phone number. These two features of our app justify
the peer-to-peer networking architecture of the app.

To simplify the network aspect of our app, we decided to utilize the cell network to
enable communication between devices. By doing this, we can use text messages to send and
receive data that is relevant to our app. In addition, by using the cell network, we don’t have to
worry about phones losing connection or being turned off, as the network already handles these
exceptions.

12

We also decided to store all the event data related to a device in the phone’s internal
storage. By doing this we eliminate the need for a centralized server thus reducing maintenance
costs. The event data is stored in a simple text file only accessible by our app.

6.7: Societal Issues

Ethically, for our project, a major issue for Eventify was the handling of private
information from the users. As with most social networking related applications, one issue that
always arises is whether or not the user’s information is being kept private from commercial
companies, hackers, or other users. With our application, there is no centralized server so data is
kept locally on the user’s phones. However, the data is unencrypted in its current state, and doing
so would be preferable for privacy due to the malware that is predominant amongst Android
devices. This would definitely be an issue to look towards in future releases.

Socially, our application would assist in bring friends closer together. With our
application creating a simple process to invite people to events, big or small, users can easily
host parties or get-togethers with each other. Our application aims to simplify the process where
other alternatives have failed, thus giving users additional and more efficient options.

Economically, our application has managed to reduce server costs through the use of a
decentralized system. This process of using a peer-to-peer network allows users to host and
create networks of their own, thus eliminating the need for a data center. At the same time
however, many social networks make additional revenue due to data analytics and trends from
their users. However, in aiming to create revenue, one possible solution would be to implement
ad banners which would not harm the actual use of the application. Another alternate solution
would be to allow users to discover nearby events which could be sponsored from other
companies, thus giving us a form of revenue.

Regarding health and safety, our application does not encounter many of these issues.
The main concern regarding safety would be users encountering strangers online. One way in
which we have remedied this problem is by limiting a user’s “friend list” to his/her contacts. By
doing so, users would already have known these people before the launching of our application
creating a safer social environment.

Manufacturing our application would be a relatively simple process. With resources to
sell applications like the Google Play store, our application could be distributed easily with many
resources to allow us to provide customers with updates and bug fixes.

Sustainability was taken into consideration with our application. We aimed to create a
platform for event planning that was not only simple, but scalable as well. We designed Eventify
to allow for events of different sizes whether that be from small get-togethers or large scale
events like a play or movie screening. Being that our application is built on the Android
platform, it also has the ability to provide users with updates through Google Play Store.

Environmental Impact of our application is fairly low due to it being based in software
rather than hardware. The maintenance of our application is fairly low as well since we do not
use a centralized server. One way in which we can prevent harm to the environment is by

13

making our code as efficient as possible to ensure that resources such as battery life are not used
wastefully.

Usability of our application is extremely straightforward. All functions in the application
are clearly labeled for ease of use, and the application itself is presented in a minimalistic
manner. Confirmation pages are generated as needed, and the application gives a Toast
notification whenever an update to the guest list is completed.

Lifelong Learning has definitely been acquired from our project. Through this
experience, our group has undergone the process of software development, meeting deadlines,
and managing projects, all of which are important processes for software engineers. In addition
to this, collaboration is an important factor in lifelong learning. Through this project, many
decisions were made in which we worked together towards the best possible solution.

Compassion was accomplished with our application by creating a solution to a problem
that existed within social networks. We aimed to bring people closer together, as well as attempt
to bring a standard towards event planning. Social networks still have many issues in which we
can connect people closer together.

Political issues do not play a role in our application. We designed Eventify for the
purpose of bringing individuals together, and we designed it solely with functionality and
usability in mind.

14

6.8: Project Risks

The risk table shows the problems that the team might run into while developing the app.
It shows the probability of each problem occurring, how severe it will be, the impact it will have
on the development of our app and a mitigation strategy.

Risks Consequences Probability Severity Impact Mitigation Strategy
Unfamiliarity Less development 0.7 9.0 6.3 Spend time in the beginning
with the time learning programming
programming languages
language
Failure to note Unknowingly 0.6 5.0 3.0 - Commented code
changes overwriting - Group meetings
changes
Unfamiliarity Less development 0.5 5.0 25 Spend time in the beginning
with the SDK time working with the SDK
Sickness Less productivity 0.4 6.0 24 - Redistribute tasks
Communicatio Results in 0.4 5.0 2.0 - Group meetings
n confusion in - Commented code
development of
product
Time Features will not 0.3 5.0 15 Complete all tasks on-time
be implemented based on the Gantt charts

6.9: Test Plan

Prototyping (High and low fidelity)

Prototypes of the user interface allow us to develop a rough idea of what the application will
look like. This allows us to test the capabilities and ease of use of the application without sinking
copious amounts of time and effort into the actual development of the application.

Heuristic Analysis
Will be performed upon completion of prototypes of the application. Heuristic analyses ensure
that the user interface of an application can be used effectively.

Host-Client Model Testing
We will test communication between Android to ensure the efficiency and correctness of the
communication,

App Testing
Lastly, we will test all components of our app to ensure that they all function as specified.

15

6.10: Test Results

e Inviting other Eventify users to an event works as intended
e Inviting users without the application results in an SMS being sent to the user due to the
design of the application

Currently Known Bugs after Version 1.0
e Event cannot be made with zero invitees
e “Date Picker” does not allow for only dates in the future
e “Clear Data” button for debugging still implemented

6.11: Development Timeline

With the features and requirements we have chosen to implement, we have developed the
following project timelines in order to ensure that the project development remains on track.

Fall 2012
Week 1 Week 2 Week3d Weekd Week5 WeekB6 Week7 Week B Week 9 Week 10
Android SOK
Java
Design Report
Problem Statement]
Gantt Chart
Project Risks
Conceptual Model
Flow Chart
Requirements
Use Cases
Architectural Diagram

Technologies Used
Design Rationale

Testing Plan / Test Cases
User Manual

Legend:
Jeff
Matt
Team

Deadline

Figure 6.11.1: Gantt Chart for Fall Quarter.

16

Winter 2013
Week 1 Week 2 Week3d Weeskd Week5 Week6 Week7 Week B Week 9 Week 10
Event Creation Page

Event Page Template
Application Walk-through
Registration Page
User Profile Page
Implementation
Event Creation

Guest Invite

Event Deletion
Joining Events
Legend:

Jeff

Matt

Team

Deadline

Android SDK

Java

Design Review

Revised Design Document
Interface

Home Page

Figure 6.11.2: Gantt Chart for Winter Quarter.

Spring 2013
Week 1 Week 2 Week3 Weekd Week5 WeekB Week7 Week 8 Week 9 Week 10
Design Conference
Comprehensive Project Report
User Manual
Maintenance Guide
Suggested Changes
Experiences/lessons leamed
Complete test results
Completed Implementation

Legend:

D
e —

Deadline

Figure 6.11.3: Gantt Chart for Spring Quarter.

6.12: User Manual

On the first launch of Eventify, user “registration” will already be completed. This is due
to the nature of Eventify accessing your contacts in order to build a friend list. The app will
begin at the home page in which a user can choose to create an event, view their own events, or
view any upcoming events that they were invited to.

If a user chooses to create a new event, they will be taken to a screen in which they can
input an event name, date, time, and location for their event. In the next page, the user can select
who they wish to invite. This list populates based on the users current contacts. Upon continuing,
this information must be confirmed before the event’s final creation.

17

Once a user has an event of their own, they can view it under the “Your Events” page.
From here a user can touch and hold down an event to delete an event. Current implementation
does not allow for the modification of events, but still do so in future releases.

If a user is invited to an event by another user the information will appear inside the
“Upcoming Events” page. From here, a user can choose to respond to an event with “Going” or
“Not Going”. If a user chooses “Going”, it will notify the event host of their attendance. If a user
chooses “Not Going”, then the event will be deleted off the user’s upcoming events, and it will
also reflect as such on the event host’s event.

7. Conclusions

Eventify is now a skeletal backbone of what we hoped to achieve when we envisioned
this project. In its current state, the application supports event creation, event details, and
deletion of events. However, part of what our group wanted to take away from this project is a
proof of concept: from the start, we wanted to avoid the use of a centralized database that would
handle event details, mainly to cut down on maintenance and support costs. In turn, this
constraint that we imposed upon the application led into our second main constraint of having
the application run without internet dependence. While there are some pros and cons to our
method, we simply should comply towards the standards set in place. Attempting to try
something beyond the norm can lead to better understanding of how we can utilize our options to
their full potential.

8. Appendix
8.1: Eventify Application Manifest

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.eventify"
android:versionCode="1"
android:versionName="1.0" >
<uses-permission android:name="android.permission.RECEIVE SMS" />
<uses-permission android:name="android.permission.READ CONTACTS" />
<uses-permission android:name="android.permission.SEND SMS" />
<uses-permission android:name="android.permission.READ SMS" />
<uses-permission android:name="android.permission.WRITE SMS" />
<uses-sdk
android:minSdkVersion="14"
android:targetSdkVersion="17" />
<application
android:allowBackup="true"
android:icon="@drawable/ic launcher"
android:label="@string/app name"
android:theme="@style/AppTheme" >
<receiver android:name="com.eventify.SMSReceiver">
<intent-filter android:priority="2147483647"

18

android:exported="true" android:enabled="true">
<action
android:name="android.provider.Telephony.SMS RECEIVED" />
</intent-filter>
</receiver>
<activity
android:name="com.eventify.MainActivity"
android:label="@string/app name">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
<activity
android:name="com.eventify.CreateActivity"
android:label="@string/title activity create"
android:parentActivityName="com.eventify.MainActivity" >
<meta-data
android:name="android.support.PARENT ACTIVITY"
android:value="com.eventify.MainActivity" />
</activity>
<activity
android:name="com.eventify.InviteGuests"
android:label="@string/title activity invite guests"
android:parentActivityName="com.eventify.CreateActivity" >
<meta-data
android:name="android.support.PARENT ACTIVITY"
android:value="com.eventify.CreateActivity" />
</activity>
<activity
android:name="com.eventify.CreateConfirm"
android:label="@string/title activity confirm"
android:parentActivityName="com.eventify.InviteGuests" >
<meta-data
android:name="android.support.PARENT ACTIVITY"
android:value="com.eventify.InviteGuests" />
</activity>
<activity
android:name="com.eventify.YourEventsActivity"
android:label="@string/YourEvents"
android:parentActivityName="com.eventify.MainActivity" >
<meta-data
android:name="android.support.PARENT ACTIVITY"
android:value="com.eventify.MainActivity" />
</activity>
<activity
android:name="com.eventify.UpcomingEventsActivity"
android:label="@string/UpcomingEvents"
android:parentActivityName="com.eventify.MainActivity" >
<meta-data
android:name="android.support.PARENT ACTIVITY"
android:value="com.eventify.MainActivity" />
</activity>
</application>
</manifest>

19

8.2: Eventify Source Code (Java)

8.2a: CreateActivity.java

package com.eventify;

import android.app.Activity;
import android.content.Intent;
import android.graphics.Typeface;
import android.os.Bundle;

import android.view.Menu;

import android.view.View;

import android.widget.DatePicker;
import android.widget.EditText;
import android.widget.TextView;
import android.widget.TimePicker;
import android.widget.Toast;

public class CreateActivity extends Activity {
@Override
protected void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView (R.layout.createactivity);
((TextView) findViewById(R.id.EventTitle)) .setTypeface (null,
Typeface.BOLD) ;
((TextView) findViewById(R.id.LocationTitle)) .setTypeface (null,
Typeface.BOLD) ;
((TextView) findViewById (R.id.DateTitle)) .setTypeface (null,
Typeface.BOLD) ;
((TextView) findViewById(R.id.TimeTitle)) .setTypeface (null,
Typeface.BOLD) ;
}

@Override
public boolean onCreateOptionsMenu (Menu menu) {
getMenuInflater () .inflate (R.menu.create, menu);

return true;
}
//Takes user to invite guests page
public void tolInviteGuests (View view) {
DatePicker datePicker =
(DatePicker) findvViewById(R.id.datePickerl);
TimePicker timePicker =
(TimePicker) findvViewById(R.id.timePickerl);

String eventTitle =
((EditText) findViewById(R.id.EventTitleInput)) .getText () .toString();
String location =
((EditText) findViewById(R.id.LocationInput)) .getText () .toString();
String date = Integer.toString(datePicker.getMonth() + 1) + "/"
+ Integer.toString(datePicker.getDayOfMonth()) + "/" +
Integer.toString (datePicker.getYear () - 2000);
int hour = timePicker.getCurrentHour () ;

String partOfDay;
if (hour >= 12) {

partOfDay = "pm";
if (hour > 12)
hour -= 12;
}
else {
partOfDay = "am";
if (hour == 0)
hour = 12;
}
String time = Integer.toString(hour) + ":" +
Integer.toString (timePicker.getCurrentMinute()) + partOfDay;
if (eventTitle.equals("") && location.equals(""))

Toast.makeText (getApplicationContext (), "Please specify an

event name and location",Toast.LENGTH SHORT) .show();

else 1if (eventTitle.equals(""))
Toast.makeText (getApplicationContext (), "Please specify an

event name",Toast.LENGTH SHORT) .show () ;

else if (location.equals(""))
Toast.makeText (getApplicationContext (), "Please specify a

location",Toast.LENGTH SHORT) .show() ;

else {
Intent intent = new Intent (this, InviteGuests.class);
intent.putExtra ("eventName", eventTitle);
intent.putExtra("location”, location);
intent.putExtra ("startDate", date);
intent.putExtra ("startTime", time);
startActivity (intent);

8.2b: CreateConfirm.java

packag
import

import
import
import
import
import

public

e com.eventify;
java.util.ArrayList;

android.app.Activity;
android.content.Intent;
android.os.Bundle;
android.view.View;
android.widget.TextView;

class CreateConfirm extends Activity {
private String eventName, location, _startDate, startTime;
private ArrayList<String> guests;

@Override

protected void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView (R.layout.activity create confirm);
_eventName = getlIntent().getExtras().getString("eventName") ;

21

_location = getlIntent () .getExtras().getString("location");
_startDate = getIntent () .getExtras().getString("startDate");
_startTime = getIntent () .getExtras().getString("startTime");
_guests = getlIntent().getStringArraylListExtra ("guests");

TextView text = (TextView) findViewById (R.id.textViewl);
String string = "Event Name: " + eventName + "\nLocation: " +
_location + "\nStart Date: " + _startDate + "\nStart Time: "

+ _startTime + "\nGuests:\n";
for (String guest: guests)
string += "\t" + guest.split("/")[0] + "\n";
text.setText (string);
}
public void finishCreate (View view) {
EventData event = new EventData(eventName, "Me", startDate,
_startTime, location, "Attending", guests);
EventData.addEvent (event, getApplicationContext());
ArrayList<String> numbers = new ArrayList<String>();
for (String guest: guests)
numbers.add (guest.split ("/") [1]);

String message = "EventifyMessage:EventInvite::" + eventName +
"::" + startDate + "::" + startTime + "::" + location + "::";
for (int 1=0;i< guests.size();i++)
if (i==0)
message += _guests.get(i);
else
message += "," + guests.get(i);

EventData.sendSMS (getApplicationContext (), numbers, message);
Intent intent = new Intent(this, MainActivity.class);
intent.addFlags(Intent.FLAG_ACTIVITY_CLEAR_TOP);
startActivity (intent);

8.2¢: EventData.java

package com.eventify;

import java.io.FilelInputStream;
import java.io.FileOutputStream;
import java.util.ArrayList;
import java.util.Arrays;

import android.content.Context;
import android.telephony.SmsManager;
import android.widget.Toast;

public class EventData {

private String name, from, startDate, startTime, location,
_status;

private ArrayList<String> guests;

public EventData (String name, String from, String startDate, String
startTime, String location, String status, ArraylList<String> guests) {
_name = name;

_from = from;
_startDate = startDate;
_startTime = startTime;
_location = location;
_guests = guests;
_status = status;

}
/*

* Section: Accessor Methods
* These methods will return the specified properties of a particular
event.
*/
public String getName () { return name; }
public String getFrom() { return from; }
public String getStartDate() { return startDate; }
public String getStartTime() { return startTime; }
public String getLocation() { return location; }
public String getStatus() { return status; }
public ArrayList<String> getGuests() { return guests; }
public void setAttending() { _status = "Attending"; }
public void setMaybe() { _status = "Maybe"; }
public void setGuests (ArraylList<String> guests) { _guests = guests; }

* Section: Class Methods
These methods will update the application's file. The file is used for
* persistent data about all the events that the user is involved in.
*/
/*

* Method: public static void writeEvents (ArrayList<EventData> events,

Context context);
*
* This method writes all of the event data passed into it to the
file.
*/
public static void writeEvents (ArrayList<EventData> events, Context
context) {
String text = "";
int iter;

for (EventData data:events) {
text += "Begin Event\nEvent Name:" + data.getName () +
"\nOwner:" + data.getFrom() + "\nStart Date:" + data.getStartDate() +
"\nStart Time:" + data.getStartTime () +

"\nLocation:" + data.getLocation() + "\nResponse: " + data.getStatus() +
"\nGuests:";
iter = 0;
for (String guest:data.getGuests()) {

if (iter!=0)
text += ", ";
text += guest;
iter++;
}
text += "\nEnd Event\n\n";

23

try {
FileOutputStream out =
context.openFileOutput ("eventify.txt",0);
out.write (text.getBytes());
out.close();
} catch (Exception e) { }
}
/*
* Method: public static ArrayList<EventData> getAllEvents (Context
context) ;
*
* This method reads the file, parses the text, creates a list of all
of the events,
* and returns the list.
*/
public static ArraylList<EventData> getAllEvents (Context context)
ArrayList<EventData> data = new ArrayList<EventData>();
String newText;
ArrayList<String> fileParts, temp;
byte[] bytes = new byte[1000];

try {
FileInputStream in =
context.openFilelInput ("eventify.txt");
in.read (bytes);
in.close();
} catch (Exception e) { }
newText = new String(bytes);

fileParts = new
ArrayList<String> (Arrays.asList (newText.split ("\n\n")));
for (int i=0;i<fileParts.size()-1;i++) {

String name, from, startDate, startTime, location, status;
ArrayList<String> guests;

name = from = startDate = startTime = location = status =
guests = new ArrayList<String>();
temp = new
ArrayList<String> (Arrays.asList(fileParts.get (i) .split("\n")));
for (int iter = 1; iter<temp.size()-1; iter++) {
ArrayList<String> parts = new
ArrayList<String> (Arrays.aslList (temp.get (iter) .split(":",2)));

if (parts.get(0) .contains ("Event Name"))
name = parts.get(l);

else if (parts.get(0).contains ("Owner"))
from = parts.get(l);

else if (parts.get(0).contains ("Start Date"))
startDate = parts.get(l);

else if (parts.get(0).contains ("Start Time"))
startTime = parts.get(l);

else if (parts.get(0).contains ("Location"))
location = parts.get(l);

else if (parts.get(0) .contains ("Response"))
status = parts.get(l);

else if (parts.get(0).contains ("Guests"))
guests = new

24

ArrayList<String> (Arrays.asList (parts.get (1) .split(",")));
}
data.add (new
EventData (name, from, startDate, startTime, location, status,guests));
}
return data;
}
/*
* Method: public static void addEvent (EventData event, Context
context) ;
*
* This method adds an event to the file. For simplicity, we query all
of the
* events currently in the file using getAllEvents (Context context),
add the event
* to the event list, and rewrite the entire file.
*/
public static void addEvent (EventData event, Context context)
ArrayList<EventData> events;

events = getAllEvents (context);
events.add (event) ;
writeEvents (events, context);
}
/*
* Method: public static void deleteEvent (String eventName, Context
context) ;
*
* This method deleted the specified event. The event to be deleted is
identified
* by the combination of the event name and the event creator. For
simplicity, we
* query all of the events currently in the file using
getAllEvents (Context context),
* iterate over the list to find the specified event, remove that
event from the list
* and rewrite the entire file.
*/
public static void deleteEvent (String eventName, String owner, Context
context) {
ArrayList<EventData> events;

int count = 0;
events = getAllEvents (context);
for (EventData event: events) {
if (eventName.equals (event.getName ()) &&
owner.equals (event.getFrom())) {
events.remove (count) ;
break;
}
count++;

}

writeEvents (events, context);

}
/*

* This method is a stub to create dummy data.

25

* DELETE LATER!!!!
*/
public static void loadDummyData (Context context) {
ArraylList<EventData> data = new ArraylList<EventData>();
ArrayList<String> guests = new ArrayList<String>();
EventData data2;

guests.add ("Bryson Lam") ;
guests.add ("Jeff Matsunaga");
guests.add ("Matt Tu");
data2 = new EventData ("Jeff's Birthday Party","Me","1/25/14",
"10:00pm","Jeff's House","Attending",guests);
data.add (data?) ;
data2 = new EventData ("Matt's Birthday Party", "Matt
Tu","11/18/13","11:00pm", "Matt's House", "Pending",guests) ;
data.add (data2);
data2 = new EventData ("Bryson's Birthday Party","Bryson
Lam","6/12/13","11:00pm", "Bryson's House", "Pending", guests) ;
data.add(data?2) ;
EventData.writeEvents (data,context);
}
public static void clearData (Context context) {
String text = "";
try |
FileOutputStream out =
context.openFileOutput ("eventify.txt",0);
out.write (text.getBytes());
out.close () ;
} catch (Exception e) { }
}
public static void sendSMS (Context context,ArraylList<String> numbers,
String msg) {
if (numbers.size ()<=0)
return;
SmsManager smsManager = SmsManager.getDefault ()
for (String number:numbers)
smsManager.sendTextMessage (number, null, msg, null, null);
Toast.makeText (context, "SMS Sent", Toast.LENGTH SHORT) .show () ;

8.2d: InviteGuests.java

package com.eventify;

import java.util.ArraylList;
import java.util.Arrays;
import java.util.Collections;

import android.app.Activity;
import android.content.Intent;
import android.database.Cursor;
import android.os.Bundle;
import android.os.Handler;
import android.os.Message;

import android.provider.ContactsContract;
import android.view.View;
import android.widget.ListView;

public class InviteGuests extends Activity {
private String eventName, location, _startDate, startTime;
private ArrayList<String> contactList;
ArrayList<String> al = null;
private ListView tableRows;
public int position = 0;
SelectedAdapter selectedAdapter;
String pStr;

/%
* Handler gets the table cell clicks from the list view
* and checks or unchecks the checkbox.

*/
Handler boxHandler = new Handler () {
public void handleMessage (Message msg) {
position = msg.argl;
if (msg.arg2 == 1) {
String s = contactlList.get (position);
String sl = s.substring (0, 1);
if (msg.arg2 == 1) {
s = s.substring(2);
if (sl.equals("0"))
s = "1,"+s;
else
s = "0,"+s;
contactList.set (position,s);
al.set (position, s);
}
}
selectedAdapter.setSelectedPosition (position) ;
}
}i
@Override

public void onCreate (Bundle icicle) {

super.onCreate (icicle);

setContentView (R.layout.contactlist);

_eventName = getIntent () .getExtras().getString("eventName");

_location = getlIntent () .getExtras().getString("location");
startDate = getIntent () .getExtras () .getString("startDate");
_startTime = getIntent() .getExtras().getString("startTime");
contactList = getContactList();
configure() ;

}
public void toConfirm(View view) {

ArrayList<String> guests = new ArrayList<String>();

for (String c:contactList)
if (c.startsWith("1,"))

guests.add (parse(c));

Intent intent = new Intent(this, CreateConfirm.class);
intent.putExtra ("eventName", eventName);
intent.putExtra("location", location);
intent.putExtra ("startDate", startDate);

intent.putExtra("startTime", startTime);
intent.putStringArrayListExtra ("qguests", guests);
startActivity (intent);
}
private ArrayList<String> getContactList () {
ArrayList<String> contacts = new ArrayList<String>();
Cursor people =
getContentResolver () .query (ContactsContract.CommonDataKinds.Phone.CONTENT UR
I,
new Stringl[]
{ContactsContract.CommonDataKinds.Phone.DISPLAY NAME, ContactsContract.Common
DataKinds.Phone.NUMBER},null,null,null);
int indexName =
people.getColumnIndex (ContactsContract.CommonDataKinds.Phone.DISPLAY NAME) ;
int indexNumber =
people.getColumnIndex (ContactsContract.CommonDataKinds.Phone.NUMBER) ;

people.moveToFirst () ;

do {
String name = people.getString(indexName) ;
String number = people.getString(indexNumber) ;
contacts.add ("0, \t" + name + "\n\t\t" + number);

} while (people.moveToNext ());

Collections.sort (contacts);

return contacts;

private void configure () {
al = new ArrayList<String>();
for(String s : contactList)
al.add(s);
selectedAdapter = new SelectedAdapter (this,0,al);
selectedAdapter.setNotifyOnChange (true) ;
tableRows = (ListView) findViewById(R.id.table);
tableRows.setAdapter (selectedAdapter) ;
selectedAdapter.setHandler (boxHandler) ;
selectedAdapter.setSelectedPosition (position);
tableRows.setSelection (position);
}
/*
* Parsers returns the name and number of the contact. The name is
* seperated from the number by a '\n'.
*/
private String parse(String text) {
ArrayList<String> parts;

parts = new ArrayList<String>(Arrays.asList (text.split(",",2)));
parts.set (1,parts.get (1) .replaceAll ("\t", ""));

parts.set (1,parts.get (1) .replaceAll ("\n", "/"));

return parts.get(l);

8.2e: MainActivity.java

package com.eventify;

28

import
import
import
import
import

public

android.app.Activity;
android.content.Intent;
android.os.Bundle;
android.view.Menu;
android.view.View;

class MainActivity extends Activity {
@Override
protected void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView (R.layout.activity main);

}

@Override
public boolean onCreateOptionsMenu (Menu menu) {
getMenuInflater () .inflate (R.menu.main, menu);

return true;
}
public void toCreateActivity (View view) {
//Takes user to create event page
Intent intent = new Intent(this, CreateActivity.class);
startActivity (intent);
}
public void toYourEvents (View view) {
//Takes user to "Your Events" page
Intent intent = new Intent (this, YourEventsActivity.class);
startActivity (intent);
}
public void toUpcomingEvents (View view) {
//Takes user to "Upcoming Events" page
Intent intent = new Intent (this, UpcomingEventsActivity.class);
startActivity (intent);
}
public void click(View view) {
EventData.clearData (getApplicationContext ()) ;
}

8.2f: Selected Adapter.java

packag
import

import
import
import
import
import
import
import
import
import
import
import

e com.eventify;
jJava.util.List;

android.content.Context;
android.graphics.Color;
android.os.Handler;
android.os.Message;
android.view.LayoutInflater;
android.view.View;
android.view.View.OnClickListener;
android.view.ViewGroup;
android.widget.ArrayAdapter;
android.widget.CheckBox;
android.widget.TextView;

29

public class SelectedAdapter extends ArrayAdapter<String>{
private Handler handler = null;
private int selectedPos = -1;

public SelectedAdapter (Context context, int textViewResourceld,
List<String> objects) {
super (context, textViewResourceld, objects);

}

public void setSelectedPosition(int pos) {
selectedPos = pos;
notifyDataSetChanged() ;

}

public int getSelectedPosition () {
return selectedPos;

}

public void setHandler (Handler h) {
handler = h;
}

@Override
public View getView(int position, View convertView, ViewGroup parent)

View v = convertView;
if (v == null) {

LayoutInflater vi =
(LayoutInflater)this.getContext () .getSystemService (Context.LAYOUT INFLATER S
ERVICE) ;

v = vi.inflate(R.layout.selected row, null);

}

TextView label = (TextView)v.findViewById(R.id.txtExample)

String s = this.getItem(position).toString();

String sl = s.substring(0, 1);

s = s.substring(2);

if (selectedPos == position)
label.setBackgroundColor (Color .WHITE) ;

else

label.setBackgroundColor (Color .WHITE) ;

label.setText (s);
final int tmpPos = position;

label.setOnClickListener (new OnClickListener () {
public void onClick (View m) {
if (handler != null) {
Message message = handler.obtainMessage() ;
message.argl = tmpPos; //use this to find
in array
message.arg?2 = 0; //zero clicked label

handler.sendMessage (message) ;

}

) ;
CheckBox checkbox = (CheckBox)v.findViewById(R.id.checkbox)

if (sl.equals("0"))
checkbox.setChecked (false) ;

30

else
checkbox.setChecked (true) ;

checkbox.setOnClickListener (new OnClickListener () {
public void onClick (View m) {
if (handler != null) {
Message message = handler.obtainMessage() ;
message.argl = tmpPos; //use this to find in
array
message.arg?2 = 1; //one clicked
checkbox

handler.sendMessage (message) ;

}
)

return(v) ;

8.20:SMSReceiver.java

package com.eventify;

import java.util.ArrayList;
import java.util.Arrays;

import android.content.BroadcastReceiver;
import android.content.Context;

import android.content.Intent;

import android.os.Bundle;

import android.telephony.SmsMessage;
import android.widget.Toast;

public class SMSReceiver extends BroadcastReceiver {

private static final String SMS RECEIVED =
"android.provider.Telephony.SMS RECEIVED";

@Override
public void onReceive (Context context, Intent intent) ({
String smsData, sender;
if (intent.getAction() .equals(SMS RECEIVED)) {
Bundle pudsBundle = intent.getExtras/();
Object[] pdus = (Object[]) pudsBundle.get ("pdus");
SmsMessage message = SmsMessage.createFromPdu((bytel])
pdus[0]);
smsData = message.getMessageBody () ;
sender = message.getOriginatingAddress{();
if (smsData.contains ("EventifyMessage:EventInvite::")) {
ArraylList<String> dataFromText, guests;
EventData data;
dataFromText = new
ArrayList<String> (Arrays.aslList (smsData.split("::")));
guests = new

ArrayList<String> (Arrays.aslList (dataFromText.get (5) .split(",")));
data = new
EventData (dataFromText.get (1), sender,dataFromText.get (2),dataFromText.get (3)
,dataFromText.get (4), "Pending", guests) ;
EventData.addEvent (data, context);
Toast.makeText (context, "SMS Received",
Toast.LENGTH SHORT) .show () ;
abortBroadcast () ;
}
else if (smsData.contains ("EventifyMessage:EventDelete::")) {
ArrayList<String> dataFromText;

dataFromText = new
ArrayList<String> (Arrays.asList (smsData.split("::")));
EventData.deleteEvent (dataFromText.get (1), sender,
context) ;
Toast.makeText (context, "SMS Received",
Toast.LENGTH SHORT) .show () ;
abortBroadcast () ;
}
else if
(smsData.contains ("EventifyMessage:EventDeleteResponse::")) {
ArrayList<String> dataFromText;
ArraylList<EventData> data =
EventData.getAllEvents (context) ;

dataFromText = new
ArrayList<String> (Arrays.asList (smsData.split("::")));
dataFromText.set (1,dataFromText.get (1) .trim());
for (EventData e:data)
if (e.getName () .equals (dataFromText.get (1)) &&

e.getFrom() .equals ("Me")) {
ArrayList<String> guests = e.getGuests();
for (int i=0;i<guests.size();i++) {
if
(sender.equals (guests.get (i) .split ("/") [11)) {
guests.remove (1) ;
break;

}

EventData.deleteEvent (e.getName (), "Me",
context) ;

e.setGuests (guests) ;

EventData.addEvent (e, context);

String msg =
"EventifyMessage:EventUpdate::" + e.getName() + "::" + e.getStartDate() +
"::" + e.getStartTime () +

"::" + e.getLocation() + "::";
for (int i=0;i<guests.size();i++)
if (1==0)
msg += guests.get(i);
else
msg += "," + guests.get(i);
ArrayList<String> numbers = new

ArrayList<String> () ;
for (String guest:guests)

32

numbers.add (guest.split ("/") [1]);
EventData.sendSMS (context, numbers, msg);
break;

}

Toast.makeText (context, "SMS Received",

Toast.LENGTH SHORT) .show () ;

abortBroadcast () ;
}
else if (smsData.contains ("EventifyMessage:EventUpdate")) {
ArraylList<String> dataFromText, guests;
EventData data;
ArrayList<EventData> events =

EventData.getAllEvents (context) ;

dataFromText = new

ArrayList<String> (Arrays.asList (smsData.split("::")));
guests = new
ArrayList<String> (Arrays.aslist (dataFromText.get (5) .split(","))):

for (EventData e:events)
if (e.getName () .equals (dataFromText.get (1)) &&

e.getFrom() .equals (sender)) {

data = new

EventData (dataFromText.get (1), sender,dataFromText.get (2) ,dataFromText.get (3)
,dataFromText.get (4),e.getStatus () ,guests);

e.getFrom(),

EventData.deleteEvent (e.getName (),

context) ;

EventData.addEvent (data, context);
break;

}

Toast.makeText (context, "SMS Received",

Toast.LENGTH SHORT) .show () ;

abortBroadcast () ;

}

8.2h:UpcomingEventsActivity.java

package com.eventify;

import

import
import
import
import
import
import
import
import
import
import
import

java.util.ArrayList;

android.
android.
android.
android.
android.
android.
android.
android.
android.
android.
android.

app.Activity;
content.Intent;
os.Bundle;
view.ContextMenu;
view.ContextMenu.ContextMenulInfo;
view.Menu;
view.Menultem;
view.View;
widget.AdapterView;
widget.ArrayAdapter;
widget.ListView;

33

public class UpcomingEventsActivity extends Activity {
ArrayList<String> tableRows;

public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView (R.layout.upcomingevents) ;
ListView 1lv = (ListView) findViewById(R.id.upcominglist) ;
ArrayList<EventData> data;
tableRows = new ArrayList<String>();

data = EventData.getAllEvents (getApplicationContext ());
for (EventData e:data)

if (!'e.getFrom() .equals("Me")) {
String text = "\nEvent Name: " + e.getName () +
"\nOwner: " + e.getFrom() + "\nLocation: " + e.getLocation() +
"\nStart Date: " + e.getStartDate() +
"\nStart Time: " + e.getStartTime() + "\nStatus: " + e.getStatus() +

"\nGuests:\n";
for (String guest:e.getGuests())
text += "\t" + guest + "\n";
tableRows.add (text) ;
}
ArrayAdapter<String> arrayAdapter = new
ArrayAdapter<String>(this, android.R.layout.simple list item 1, tableRows);
lv.setAdapter (arrayAdapter) ;
registerForContextMenu (1lv) ;
}
@Override
public void onCreateContextMenu (ContextMenu menu, View v,
ContextMenuInfo menulnfo) {
if (v.getId()==R.id.upcominglist) {
menu.setHeaderTitle ("Response?") ;
String[] menultems = {"Attending", "Maybe","Decline"};
for (int i = 0; i<menultems.length; i++)
menu.add (Menu.NONE, i, i, menultems[i]);

}
@Override
public boolean onContextItemSelected (Menultem item) {
AdapterView.AdapterContextMenuInfo info =
(AdapterView.AdapterContextMenuInfo) item.getMenulnfo () ;

int index = item.getItemId();
String eventString = tableRows.get (info.position);
if (index == 0) {

ArrayList<EventData> data =
EventData.getAllEvents (getApplicationContext ());

String[] parts = eventString.split("\n");

parts = parts[l].split(":");

parts[1l] = parts[l].trim();
for (EventData e:data)
if (e.getName () .equals(parts[l])) {

e.setAttending () ;

EventData.deleteEvent (e.getName (),
e.getFrom (), getApplicationContext());

EventData.addEvent (e,
getApplicationContext());

34

break;
}
}
else if (index == 1) {
ArrayList<EventData> data =
EventData.getAllEvents (getApplicationContext ()) ;
String[] parts = eventString.split ("\n");
parts = parts[l].split(":");
parts[l] = parts[l].trim();
for (EventData e:data)
if (e.getName () .equals(parts[1l])) {
e.setMaybe () ;
EventData.deleteEvent (e.getName (),
e.getFrom (), getApplicationContext());
EventData.addEvent (e,
getApplicationContext ());
break;
}
}
else if (index == 2) {
ArrayList<EventData> data =
EventData.getAllEvents (getApplicationContext ()) ;
String[] parts = eventString.split ("\n");
parts = parts[l].split(":");
parts[l] = parts[l].trim();
for (EventData e:data)
if (e.getName () .equals (parts[l]) &&

le.getFrom() .equals ("Me")) {

String msg =
"EventifyMessage:EventDeleteResponse::" + e.getName () ;

ArrayList<String> numbers = new
ArrayList<String>();

numbers.add (e.getFrom()) ;

EventData.sendSMS (getApplicationContext (),
numbers, msqg) ;
EventData.deleteEvent (e.getName (),
e.getFrom(), getApplicationContext());
break;
}
}
Intent intent = new Intent(this, MainActivity.class);
intent.addFlags(Intent.FLAG_ACTIVITY_CLEAR_TOP);
startActivity (intent);
return true;

8.2i:YourEventsActivity.java

package com.eventify;
import java.util.ArrayList;

import android.app.Activity;
import android.content.Intent;

35

import android.os.Bundle;

import android.view.ContextMenu;

import android.view.ContextMenu.ContextMenuInfo;
import android.view.Menu;

import android.view.Menultem;

import android.view.View;

import android.widget.AdapterView;

import android.widget.ArrayAdapter;

import android.widget.ListView;

public class YourEventsActivity extends Activity {
ArrayList<String> tableRows;

public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView (R.layout.yourevents) ;
ListView lv = (ListView) findViewById(R.id.listViewl);
ArrayList<EventData> data;
tableRows = new ArrayList<String>();

data = EventData.getAllEvents (getApplicationContext ());
for (EventData e:data)

if (e.getFrom() .equals("Me")) {
String text = "\nEvent Name: " + e.getName () +
"\nLocation: " + e.getLocation() + "\nStart Date: " + e.getStartDate() +
"\nStart Time: " + e.getStartTime() +

"\nGuests:\n";
for (String guest:e.getGuests())
text += "\t" + guest + "\n";
tableRows.add (text) ;
}
ArrayAdapter<String> arrayAdapter = new
ArrayAdapter<String>(this, android.R.layout.simple list item 1, tableRows);
lv.setAdapter (arrayAdapter) ;
registerForContextMenu (1v) ;
}
@Override
public void onCreateContextMenu (ContextMenu menu, View v,
ContextMenuInfo menulInfo) {

if (v.getId()==R.id.listViewl) {
menu.setHeaderTitle ("Delete Event?");
String[] menultems = {"Yes","No"};
for (int i = 0; i<menultems.length; i++)

menu.add (Menu.NONE, i, i, menultems[i]);

}
@Override
public boolean onContextItemSelected (Menultem item) {
AdapterView.AdapterContextMenuInfo info =
(AdapterView.AdapterContextMenulInfo) item.getMenulInfo () ;

int index = item.getItemId()
String eventString = tableRows.get (info.position);
if (index == 0) {

ArraylList<EventData> data =
EventData.getAllEvents (getApplicationContext ()) ;
String[] parts = eventString.split ("\n");

36

parts = parts[l].split(":");
parts[l] = parts[l].trim();
for (EventData e:data)
if (e.getFrom() .equals("Me") &&

e.getName () .equals (parts[l])) {
ArrayList<String> guests = e.getGuests();
for (int i1=0;i<guests.size();i++)
guests.set (i,guests.get (i) .split("/") [1].trim());

String message =

"EventifyMessage:EventDelete::" + e.getName () ;

guests, message)

EventData.sendSMS (getApplicationContext (),

EventData.deleteEvent (e.getName (), "Me",

getApplicationContext());

}

break;

}

Intent intent = new Intent (this, MainActivity.class);
intent.addFlags(Intent.FLAG_ACTIVITY_CLEAR_TOP);
startActivity (intent);

return true;

8.3: Eventify Layout Source Code (XML)

8.3a: activity create confirm.xml

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout width="match parent"
android:layout height="wrap content"
android:orientation="vertical"
android:paddingLeft="@dimen/activity horizontal margin"
android:paddingTop="@dimen/activity vertical margin">

<TextView
android:
android:
android:
android:
android:

<Button
android:
android:
android:
android:
android:
android:

</LinearLayout>

8.3b: activity main

id="@+id/textViewl"

layout width="match parent"

layout height="wrap content"

text="@string/EventTitle"
textAppearance="7?android:attr/textAppearanceMedium" />

id="@+id/createactualevent"

layout width="match parent"

layout height="wrap content"

layout marginRight="Q@dimen/activity horizontal margin"
text="@string/CreateEvent"

onClick="finishCreate" />

xml

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout width="match parent"

37

android:layout height="match parent"
android:orientation="vertical"
android:paddingBottom="@dimen/activity vertical margin"
android:paddingLeft="@dimen/activity horizontal margin"
android:paddingRight="@dimen/activity horizontal margin"
android:paddingTop="@dimen/activity vertical margin"
tools:context=".MainActivity">
<Button
android:id="@+id/toCreate"
android:layout width="match parent"
android:layout height="wrap content"
android:text="@string/CreateEvent"
android:onClick="toCreateActivity" />
<Button
android:id="@+id/toYourEvents"
android:layout width="match parent"
android:layout height="wrap content"
android:text="@string/YourEvents"
android:onClick="toYourEvents" />
<Button
android:id="@+id/toUpcomingPage"
android:layout width="match parent"
android:layout height="wrap content"
android:text="@string/UpcomingEvents"
android:onClick="toUpcomingEvents" />
<Button
android:id="@+id/Clear"
android:layout width="match parent"
android:layout height="wrap content"
android:text="@string/Clear"
android:onClick="click" />
</LinearLayout>

8.3c: contactlist.xml

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout width="match parent"
android:layout height="match parent">
<Button
android:id="@+id/button_ send"
android:layout width="fill parent"”
android:layout height="wrap content"
android:textSize="14sp"
android:onClick="toConfirm"
android:text="@string/Done" />
<ListView
android:id="@+id/table"
android:layout width="fill parent"”
android:layout height="fill parent"
android:choiceMode="singleChoice"
android:background="#FFFFFEF" />
</LinearLayout>

8.3d: createactivity.xml

<ScrollView
xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:orientation="vertical"
android:layout width="match parent"
android:layout height="match parent"
android:paddingLeft="@dimen/activity horizontal margin"
tools:context=".CreateActivity">
<LinearLayout
android:orientation="vertical"
android:layout width="match parent"
android:layout height="wrap content">
<TextView
android:id="@+id/EventTitle"
android:layout width="match parent"
android:layout height="wrap content"
android:layout marginTop="@dimen/activity vertical margin"

android:layout marginRight="@dimen/activity horizontal margin"
android:text="@string/EventTitle"
android:textAppearance="?android:attr/textAppearanceSmall"

/>
<EditText
android:id="@+id/EventTitleInput"
android:layout width="match parent"
android:layout height="wrap content"
android:layout marginRight="@€dimen/activity horizontal margin"
android:ems="10"
android:inputType="text" />
<TextView
android:id="@+id/LocationTitle"
android:layout width="match parent"
android:layout height="wrap content"
android:layout marginRight="@dimen/activity horizontal margin"
android:layout marginTop="10dp"
android:text="@string/Location"
android:textAppearance="7?android:attr/textAppearanceSmall"
/>

<EditText
android:id="@+id/LocationInput"
android:layout width="match parent"
android:layout height="wrap content"

android:layout marginRight="@dimen/activity horizontal margin"
android:ems="10"
android:inputType="text" />
<TextView
android:id="@+id/DateTitle"
android:layout width="match parent"
android:layout height="wrap content"

android:layout marginRight="@dimen/activity horizontal margin"

39

android:layout marginTop="10dp"

android:text="@string/PickDate"

android:textAppearance="?android:attr/textAppearanceSmall"
/>

<DatePicker

android:id="@+id/datePickerl"

android:layout width="match parent"

android:layout height="wrap content"

android:layout marginRight="@dimen/activity horizontal margin"
android:calendarViewShown="false" />
<TextView
android:id="@+id/TimeTitle"
android:layout width="match parent"
android:layout height="wrap content"

android:layout marginRight="@dimen/activity horizontal margin"
android:layout marginTop="10dp"
android:text="@string/PickTime"
android:textAppearance="7?android:attr/textAppearanceSmall"
/>
<TimePicker
android:id="@+id/timePickerl"
android:layout width="match parent"
android:layout height="wrap content"

android:layout marginRight="@dimen/activity horizontal margin" />
<Button
android:id="@+id/toInviteGuests"
android:layout width="match parent"
android:layout height="wrap content"

android:layout marginRight="@€dimen/activity horizontal margin"

android:layout marginBottom="@dimen/activity vertical margin"
android:onClick="toInviteGuests"
android:text="@string/InviteGuests" />
</LinearLayout>
</ScrollView>

8.3e: selected row.xml

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="horizontal"

android:layout width="fill parent"”

android:layout height="fill parent"

android:weightSum="8.0">

<TextView
android:id="@+id/txtExample"
android:layout width="266dp"
android:layout height="57dp"
android:textColor="#000000"
android:textSize="18sp" />

<CheckBox
android:id="@+id/checkbox"

40

android:layout width="0dip"

android:layout height="wrap content"

android:text=""

android:layout weight="6.0" />
</LinearLayout>

8.3f: upcomingevents.xml

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="horizontal"
android:layout width="fill parent"”
android:layout height="fill parent"
android:weightSum="8.0">
<ListView
android:id="@+id/upcominglist"
android:layout width="fill parent"
android:layout height="wrap content" >
</ListView>
</LinearLayout>

8.30: yourevents.xml

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="horizontal"
android:layout width="fill parent"”
android:layout height="fill parent"
android:weightSum="8.0">
<ListView
android:id="@+id/listViewl"
android:layout width="fill parent"”
android:layout height="wrap content">
</ListView>
</LinearLayout>

41

i -

1 B
Santa Clara
University

Senior (Undergraduate) Student Thesis Publication Agreement
(SCU is Licensee)

Theses completed in partial fulfillment of an undergraduate degree must be deposited in the
University Archives and made publicly available in the SCU Library. Furthermore, SCU has the
right to copy, digitize and publish the title, author, and abstract of each thesis on the World Wide

Web for SCU’s Library use. Authors may choose whether or not to make their complete thesis
publicly available on the World Wide Web, as set forth below.

1) Student Name/s (“Author/s™): Bryson Lam, Jeff Matsunaga, Matt Tu

2) Effective Date: 6/6/2013

3) Thesis Title (the “Thesis™): Eventify: An Android-based Event Planning
Application

4) ccess Publishing: Open access publishing means that the Author’s complete Thesis
will be available via the World Wide Web (as defined below) and not restricted to viewing

only by library patrons, users of on-campus computers, and other SCU-authenticated readers.

a) J Yes, I want to provide open access publishing of the Thesis via the World Wide

Web and am therefore electing electronic submission of the Thesis. I understand that I
will not be eligible to receive royalties.

b) No, I do not want to provide open access publishing of the Thesis via the World
Wide Web and am therefore electing paper submission of the Thesis. I understand that

my name, and the title and abstract of the Thesis will still be available via the World
Wide Web.

If Author has selected “Yes” above, please answer the following question:

c) ! No delay of publication, I want the Thesis to be available on the World Wide Web
as soon as 1t 1s published.

d) [want to delay publication of the Thesis on the World Wide Web. Delay

publication of the Thesis on the World Wide Web for:

6 month embargo; 1 year embargo; 2 year embargo.

—— T e E T e

Embargos start from the date on which the Thesis enters the library catalog. While under
embargo, the Thesis will be available only to users of on-campus computers and other
SCU-authenticated readers, but not to readers outside the SCU network. Once the

Revised 11/20/12 |

embargo is lifted, all users will have access to the efectronic version of the Thesis via the
World Wide Web.

5) Copyright: Author acknowledges that he or she owns the copyright for the Thesis, except if
the work has been developed in the course of or pursuant {0 a sponsored project or other
agreement between the University and a third party. In such cases, the terms of the applicable
third-party agreement shall govern the disposition of rights in copyright, and the Author may

need to have the third party co-sign this publication agreement.

6) World Wide Web: For purposes of this Agreement, the “World Wide Web” means the World
Wide Web, the Internet, and any successor or other computer or communication network or

technology capable of electronically distributing content.

AUTHOR ACKNOWLEDGES THAT HE OR SHE HAS READ AND AGREES TO THIS
PUBLICATION AGREEMENT AND THE ATTACHED TERMS AND CONDITIONS, AND

THAT BY SIGNING BELOW, AUTHOR IS BOUND BY THE TERMS OF THIS
PUBLICATION AGREEMENT AND THE ATTACHED TERMS AND CONDITIONS.

Dean of Degree-Granting School

Signed: { 2 p——
M Jfgem

Printed Name: _Qﬁ%__@i!

e __ 1 [0125

Author Additional Authors

Signed: Signed: ,2 EZ i / E % EEE wa’
Printed Name: ryson Lam Printed Name: Jﬁff Mgtggnggg
b B6/2013 pwe_ 66/2013
Additional Authors Additional Authors

Signed:) T Signed: ______
Printed Name: Matt Tu Printed Name:
Date: 6/6/2013 Date: e
Additional Authors Additional Authors

Signed: [Signed: _________ e
Printed Name: I Printed Name: U SO

Revised 11/20/12 2

1)

2)

Terms and Conditions
License Grant Author hereby grants to SCU, the

hon=exclusive, royalty free, fully paid-up,
iFrevocable, unrestricted, transferable,
sublicensable, worldwide and perpetual right to
uke, adapt, reproduce (including in digital
furmat), distribute, prepare derivative works of.
publicly perform, broadeast, and/or display the
Thesis, in any and all media now known ot
herealter devised, in connection with SCU's
library use. Author acknowledges that the above
license grant includes the right for SCU to include
the title, abstract, bibliography and any other
information necessary regarding the Thesis for
inclusion in SCU's library's online catalog, which
I8 avatlable via the World Wide Web. SCU will
limit publication in connection with the Author's
restrictions set forth on the cover page of this
Agreement. In the cvent the Thesis is not
published by SCU in accordance with the
restrictions set forth on the cover page of this
Agreement, Author's sole remedy and SCU's sole
liability, shall be for SCU to use commercially
reasonable efforts to correct such error.

5 A A I AR MEILAL S U A LLITOE .
Author hereby represents and warrants that: (i)
Author owns all right, title and interest in the
Thesis; (i11) Author has the power and authority to
enter into this Agreement and perform its
obligations hereunder; (ii1) the licensed Thesis
will not wviolate any laws, regulations or
ordinances, or the rights of any third party and
will not give rise to any claims of such violation,
including, without limitation, claims of libel,

slander, defamation, copyright infringement,
infringement of moral rights, trademark
infringement, false designation of ongin,

disparagement, violation of privacy, publicity,
identity or other proprictary rights, piracy or
plagiarism; and (iv) to the extent that Author is
required to obtain rights, licenses, permissions,
clearances, approvals and/or attribution
information necessary for SCU to utilize the
Thesis, Author will do so accurately and
completely, and the Thesis shall incorporate the
necessary credit and/or attribution information.
Author represents and warrants that it understands
that SCU will rely on the contents of this
Agreement and Author shall not have the right to

Revised 11/20/12

3)

cnjoin the exploitation of the Thesis or to reseind
any rights granted to SCU hereunder.

No _Approval Author hereby relinquishes any
right to examine or approve any use, publication,

modification, exhibition or other exploitation of
the Thesis in connection with SCU's library use.

4) lndemnification. Licensee shall indemnity SCU,

and its affiliated corporations, and all oflficers,
directors, agents, employees, representatives and
associates thereof, and save and hold cach and all
of them harmless of and from any and all loss,
cost, damage, hLability and expense, including
attorneys’ fees, with respect to any claun that the
Thesis infringes any third party mtellectual
property tights or otherwise ansing trom any
breach of the representations and warranties set
forth in Section 2 (Representations and
Warranties of Author).

5) General. This Agreement constitutes the final,

complete and exclusive agreement between the
parties with respect to the subject matter hereof,
and supersedes any prior of contemporaneous
agreement, either wrntten or oral. This
Agreement shall be governed by the laws of the
State of California, without regard to its contlicts
of law provisions. Both parties hereby consent to
the exclusive jurisdiction and venue of the state
and federal courts located in Santa Clara County,
California. SCU may freely assign thas
Agreement. If any provision of this Agreetient i3
held by a court of competent jurisdiction to be
contrary to law, such provision will be changed
and interpreted so as to best accomplish the
objectives of the original provision to the fullest
extent allowed by law, and it no teasible
interpretation will save such provision, it shall be
severed from this Agreement, and the remaining
provisions remain in full force and etfect. The
failure of either party to enforce any provision of
this Agreement shall in no way be construed to be
a present or future waiver of such provision, wor
in any way affect the right of either pay to
enforce such provision thereatter. The express
waiver by either party of any provision of this
Agreement shall not constitute a waiver of the
other party’s future obligation to comply with
such provision.

SANTA CLARA UNIVERSITY

Eventify: An Android Event
Handling Application

By Jeff Matsunaga, Matt Tu, and Bryson Lam

SANTA CLARA UNIVERSITY

Background

e Lack of event planning solutions
e Easy way to create events on the go

e Current Products
— Facebook Events
— Group Text Messaging

Existing Products

Pros

SANTA CLARA UNIVERSITY

Cons

Facebook Events

Large user base
Suitable for large
events

Invitation Spam
Time-consuming
process

Not useful for small
events

Group Text
Messaging

Simple to use
Typical for smaller

events

Implemented differently
on different operating
systems

Does not scale for large
group sizes

B _Santa Clara
. an University

SANTA CLARA UNIVERSITY

Our Solution

e Android-based application
e Lightweight

— Should not consume excessive storage space
e Specifically designed for event planning

e Avoid use of a centralized server
— Does not rely on internet access

B _Santa Clara
www.scu.edu ‘ f'.\ University

SANTA CLARA UNIVERSITY

Conceptual Model

&) Y .l W 10:30 PM
41 10:27 PM

(e Your Events

e Eventify

Event Name: Bryson's birthday party!

Create Event Location: Villas 8204
Start Date: 5/11/13

Your Events Start Time: 9:0pm
Guests:
U ing E Bryson Lam/(808) 728-1425
g = Jeff Matsunaga/+18087413018
Matt Tu/408 8253118

Event Name: Senior Design afterparty
Location: Locatelli center
Start Date: 5/9/13
Start Time: 6:30pm
Guests:
Bryson Lam/(808) 728-1425
Jeff Matsunaga/+18087413018
Matt Tu/408 8253118

B _Santa Clara
. an University

Host

SANTA CLARA UNIVERSITY

Use Cases

S

Create an Event

AEDN

View an Event

Accept/Decline an Invitation
to an Event

Invite People to an Event

Delete an Event

]

\

Guest

B _Santa Clara
. o University

SANTA CLARA UNIVERSITY

—» Home Page

Activity Diagram

= =]
P

S

www.scu.edu

——Scrooror evonerne Rl

SANTA CLARA UNIVERSITY

Requirements
Functional Nonfunctional
o * Friendly user interface
 Event functionality Able to accommodate different
« Basic create, invite, and event sizes
deletion of events * More customizable event
* Guest lists options

B _Santa Clara
. an Universi

SANTA CLARA UNIVERSITY

Design Constraints

e Limitations of Android SDK

e Does not require a central server/database
— Relies on internal file storage

e Does not require extensive user registration
— Finds users based on the phone contacts

B _Santa Clara
o a0 Universi

Project Risks

Risks Consequences Probability Severity Impact

Unfamiliarity with | ogg development

programming . 0.7
Ianguages/SDI% time
, Unknowingly
Falluriﬁgr?gég overwriting 0.6
changes
, .. Features may not
Time Constraints 0.3

be implemented

Sickness Less productivity 0.4

Probability x Severity = Impact

0.9 6.3
0.5 3.0
7.0 2.1
5.0 2.0

SANTA CLARA UNIVERSITY

Mitigation Strategy

 Spend time in the beginning to
become familiarized with tools

« Comment code
» Group meetings

 Adhere to project timeline
* Delegate tasks

* Redistribute tasks

B _Santa Clara
. an University

SANTA CLARA UNIVERSITY

Developmental Timeline (Fall Qtr.)

Fall 2012
Week 1 Week 2 Week3 Weekd Week5 Week6 Week7 Week8 Week9 Week 10
Android SDK
Java
Design Report
Problem Statement]
Gantt Chart
Project Risks
Conceptual Model

Flow Chart
Requirements

Use Cases |
Architectural Diagram

Technologies Used
Design Rationale
Testing Plan / Test Cases

User Manual

Legend:

H
—

Matt
Team
Deadline

B _Santa Clara
. o University

SANTA CLARA UNIVERSITY

Developmental Timeline (Winter Qtr.)

Winter 2013

Week 1 Week 2 Week3 Weekd4 Week5 Week86 Week7 Week8 Week9 Week 10
Android SDK
Java
Design Review
Revised Design Document
Interface
Home Page
Event Creation Page
Event Page Template
Application Walk-through
Registration Page
User Profile Page
Implementation
Event Creation
Guest Invite
Event Deletion
Joining Events | |

Legend:
Jeff

Matt
Team
Deadline

B _Santa Clara
. an University

SANTA CLARA UNIVERSITY

Developmental Timeline (Spring Qtr.)

Spring 2013

Week 1 Week 2 Week3 Weekd4 Week5 Week6 Week7 Week8 Week9 Week 10
Design Conference _
Comprehensive Project Report
User Manual

Maintenance Guide
Suggested Changes
Experiences/lessons |learned
Complete test results
Completed Implementation

Legend:
Jeff

Matt
Team
Deadline

B _Santa Clara
. an University

SANTA CLARA UNIVERSITY

Architectural Diagram

Event Croator

SANTA CLARA UNIVERSITY

Technologies Used

Android SDK

Java
XML
Internal file storage

Cellular Network

SANTA CLARA UNIVERSITY

Design Rationale

Network Topology
Peer-to-peer network
Phone numbers as addresses
Event creator = server; event attendees = clients

Message Queuing
Ensuring messages are sent and received
Handled by the cellular network

B _Santa Clara
L a1 University

SANTA CLARA UNIVERSITY

Live Demo

SANTA CLARA UNIVERSITY

Future Features

Location and navigation support

Updates via notifications
Event modification capabilities

Event data polls

SANTA CLARA UNIVERSITY

Lessons Learned

e Having many features can be difficult to implement
e Expand upon features in different releases

e Proof of concept: Cellular network-based
application is possible for Android phones

SANTA CLARA UNIVERSITY

Questions?

	Santa Clara University
	Scholar Commons
	6-6-2013

	Eventify : an android-based planning application
	Bryson Lam
	Jeff Matsunaga
	Matt Tu
	Recommended Citation

	EventifyFinalThesis
	p4 001

	2013-06-07 11-04
	EventifyDesignConferenceSlides (1)

