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Abstract

Pricing Software Upgrades:

The Role of Product Improvement & User Costs

The computer software industry is an extreme example of rapid new product introduction. However,

many consumers are sophisticated enough to anticipate the availability of upgrades in the future.

This creates the possibility that consumers might either postpone purchase or buy early on and

never upgrade. In response, many software producers offer special upgrade pricing to old customers

in order to mitigate the effects of strategic consumer behavior. We analyze the optimality of

upgrade pricing by characterizing the relationship between magnitude of product improvement and

the equilibrium pricing structure, particularly in the context of user upgrade costs. This upgrade

cost (such as the cost of upgrading complementary hardware or drivers) is incurred by the user

when she buys the new version but is not captured by the upgrade price for the software.

Our approach is to formulate a game theoretic model where consumers can look ahead and anticipate

prices and product qualities while the firm can offer special upgrade pricing. We classify upgrades as

minor, moderate or large based on the primitive parameters. We find that at sufficiently large user

costs, upgrade pricing is an effective tool for minor and large upgrades but not moderate upgrades.

Thus, upgrade pricing is suboptimal for the firm for a middle range of product improvement. User

upgrade costs have both direct and indirect effects on the pricing decision. The indirect effect

arises because the upgrade cost is a critical factor in determining whether all old consumers would

upgrade to a new product or not and this further alters the product improvement threshold at

which special upgrade pricing becomes optimal. Finally, we also analyze the impact of upgrade

pricing on the total coverage of the market.

Keywords: pricing, market segmentation, upgrades, software industry
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Pricing Software Upgrades:

The Role of Product Improvement & User Costs

1 Introduction

Upgrades are endemic to many industries that exhibit rapid product innovation. The computer

software industry is no exception. By now, this practice of the software industry is known to most

consumers and they can usually predict the arrival of newer versions in the future. In fact, today’s

consumers are tech-savvy enough to have a reasonable estimate of the state of technological evolu-

tion. In the software industry, this information can be obtained from various third party sources:

magazines such as PC World, technology websites such as Zdnet.com, and various other internet

forums. Very often, firms themselves provide strong hints to consumers about the possible features

of future versions, including the projected time of release. For example, top executives at Microsoft

(including Bill Gates) have been promoting the complete device inter-operability of Windows Long-

horn (projected release in 2006, and now renamed as Windows Vista) since 2003(USA Today, 2003).

They even provide specific examples of how such inter-operability would help consumers improve

their day-to-day computer related tasks. Irrespective of how the consumer obtains knowledge of

such innovation, the fact remains that consumers are very likely to project into the future and

make a longer term decision. This decision can take two unfavorable outcomes for the producer of

software: consumers can choose to buy now and not upgrade at all when the new version comes

along. They can also choose to postpone their purchase until the new version arrives.

Firms have adopted different strategies to mitigate such strategic consumer behavior. The most

traditional (and yet the most under-explored in academic research) strategy is to offer older con-

sumers an upgrade price: for instance, a new version of Windows Vista Home costs about $215

while users of old versions of Windows can upgrade to this version at only $95 (www.amazon.com,

October 2007). This phenomenon is not restricted to operating systems alone. A similar practice is

observed with Corel WordPerfect Office X3 Professional Edition: the upgrade sells for $245 while

the new version sells for $335. Many other strategies have also emerged in recent times: firms

may offer upgrades in modular form and price accordingly; Microsoft has begun to offer a form of



No. Company Product
Upgrade 

Pricing (Y/N) Full Price
Upgrade 

price
% 

Discount
1 Microsoft Office Home & Student 2007 No $124.99 - -
2 Microsoft Office Professional 2007 Yes $312.79 $263.95 16%
3 Adobe Acrobat 8.0 Professional Yes $383.99 $156.49 59%
4 Adobe Photoshop CS3 Yes $629.49 $195.99 69%
5 IMSI Turbocad Deluxe V14 No $71.28 - -
6 Autocad LT 2008 Yes $799.99 $314.99 61%
7 Borland C++ Builder 6 Personal No $79.99 - -
8 Mathworks Matlab Individual No $1,900 - -
9 MacKichan Scientific Workplace Yes $845 $295 65%
10 Frontline Systems Solver Platform SDK No $1,495 - -
11 Corel Graphics Suite X3 Yes $337.99 $160.99 52%
12 Macromedia Studio 8 No $999 - -
13 Apple Final Cut Studio 2 Yes $1,299 $449.99 65%
14 Apple iWork '08 No $74.99 - -
15 Intuit Quickbooks Pro 2008 No $179.99 - -

Figure 1: Pricing strategies of different firms (Source: www.amazon.com, October 2007)

upgrade insurance where consumers pay upfront fees to cover any potential upgrades in the future;

the rise of high speed networks allows firms to deploy software as a service and then deploy either

pay-as-you-go and / or subscription pricing schemes which guarantee automatic upgrades. However,

the conventional method of offering an upgrade price is still widely used and merits attention.

Figure 1 lists the prices of software products offered by several firms as obtained from amazon.com.

Each of the product examples represents a newer version of an already existing product. These

examples are in addition to the two examples (Windows Vista and Corel WordPerfect) highlighted

before. Upgrade pricing is frequently used though not always. Further, even when upgrade pricing

is used, the magnitude of the discount varies widely from 16% of full price to 69%. Also, the

deployment of upgrade pricing varies within the product line of the same firm. This raises an

important question. When is offering an upgrade price to old customers the best strategy for a

firm? What factors does this decision depend on? How does the exact magnitude of the upgrade

price vary with these factors?

What factors would consumers consider in making a decision to buy an upgrade? Clearly, the

level of product improvement in the upgrade is critical. The software industry is known to be

particularly notorious in this regard since many product upgrades are only minor to moderate
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improvements over older versions. For instance, many users on amazon.com consider the "plug and

play" abilities of Windows XP to be the only improvement over Windows 2000. The upgrade price

would certainly be a factor. In addition, users of a software product face an upgrade cost that is

not captured by the price of the upgrade. For example, consider a user who upgrades to Windows

Vista. Such a user may need to upgrade her hardware configuration to meet the non-negotiable

demands of Windows Vista. She may also have to undertake the hassle of reinstalling Windows

Vista compatible applications software. This fact is voiced in several popular software forums(PC

World, 2007). In addition, even Windows experts claim that the user interface for Windows Vista

is difficult to get used to (winsupersite.com, 2006). Thus, the user upgrade cost may also include

the cost of learning. In fact, these costs can be quantified. PCWorld comes up with a number

for this upgrade cost: $180 in order to upgrade to 2GB RAM and $150 on a new graphics card.

Without these additions, experts conclude that it is difficult to effectively utilize the features of

Vista. This significantly alters the decision-making process for the user. Of further importance is

the fact that these costs could vary widely across products. For instance, in the experience of the

authors, upgrading to the latest version of Matlab typically does not come with a hidden upgrade

cost. Of course, this could change with a new generation of Matlab which is a significant leap in

terms of features over previous versions. This fact also implies that upgrade costs have a tendency

to increase as more attributes and features are incorporated in the upgrade.

What motivates a firm to offer upgrade prices? The most important reason would be the ability to

implement third degree price discrimination. The product improvement observed by consumers who

possess the older version is lower than new consumers. In addition, they also experience different

upgrade costs. This might result in lower incremental utility for an old consumer as compared

to a new consumer. Hence the firm has to provide a lower price to these consumers to get them

to upgrade to the new product. However, older consumers are typically early adopters and hence

likely to be higher willingness-to-pay consumers. Consequently, the incremental utility for an old

consumer could be higher than a new consumer. This negates the need to offer upgrade pricing.

We explore this trade-off by modeling all the above factors simultaneously. Our objective is to

answer the question: when is offering an upgrade price to old customers the optimal strategy?

Prior literature on durable goods innovation primarily addresses the issue of "credible commit-

ment" of prices in the presence of strategic customers. The objective of this line of work was to
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discover mechanisms through which credible commitment might be possible. One of the insights

from past literature is that such credible commitment is never possible for large upgrades when

upgrade discounts are offered. We show that this no longer holds once the user upgrade cost is

incorporated into the customer’s utility function. In particular, credible commitment with upgrade

pricing for large upgrades is indeed possible for high enough upgrade costs. Further, even with

minor to moderate upgrades, the user upgrade cost in conjunction with the product improvement

level has a significant impact on the upgrade pricing decision. The fact that all old customers up-

grade is a surprisingly sticky result in prior work which does not quite match reality. Incorporating

the user upgrade cost helps us to show that this result is not always true. In particular, high user

costs ensure that not all old customers upgrade to the new version. This also changes the product

improvement threshold at which upgrade pricing is optimal. Putting together the results for the

entire range of product improvement, the following result emerges: for high user costs, upgrade

pricing is suboptimal only for an intermediate range of product improvement. This provides guid-

ance to managers on when they should expect to use upgrade pricing. Further, we also analyze the

impact of upgrade pricing on profitability and market coverage and find that: upgrade pricing can

substantially improve the firm’s profitability provided it is viable (for a given set of parameters)

but the overall market coverage is lower when compared to a situation when upgrade pricing is dis-

allowed. Thus, this paper bridges the gap between the current state of knowledge in durable goods

pricing and in sequential innovation by incorporating a detailed understanding of the operational

costs incurred by the consumer when a durable product upgrade is purchased.

The paper proceeds as follows: Section 2 reviews related literature. Section 3 describes the model

and states its basic assumptions. Section 4 describes the equilibrium solution structure with a

uniform distribution on consumer willingness to pay. Section 5 generalizes some of the results to a

broader class of distributions. The proofs for the main propositions are provided in the appendix.

Section 6 concludes the discussion and proposes future research directions.

2 Related Literature

Our problem closely relates to sequential innovation and pricing, a topic that has been studied in

different streams of literature: new product development, marketing & economics. The earliest
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paper in this context is by Dhebar(1994) that looks at the effect of product improvement on

the ability of the firm to credibly commit to future period prices. The primary result is that

there is an upper limit on the rate of product improvement such that credible commitment is

not possible when this upper limit is exceeded. Upgrade pricing is also considered in the same

context, but no prescription is provided regarding its optimality. Consumers are given only one

option to buy the product (either now or later) and upgrading the product is not possible unless

an upgrade price is offered. Kornish(2001) generalizes the utility function used in Dhebar(1994),

disallows upgrade pricing but allows old customers to upgrade even without such pricing. She

shows that when upgrade pricing is not considered, one can show the existence of an equilibrium

where a firm can credibly commit to prices even when the product is improving rapidly. While

the utility function used in Kornish(2001) admits the possibility of an upgrade cost, the impact

of such a possibility on the final outcome is not studied. We combine aspects of both papers,

in that we allow the firm to set an upgrade price, yet consumers can upgrade even when such

upgrade pricing is not offered. In addition, we analyze the impact of a user upgrade cost in such a

setting. While Dhebar(1994) and Kornish(2001) address the issue of large upgrades, Fudenberg &

Tirole(1998) look at moderate upgrades. They study the upgrades and trade-ins issue by considering

different information structures that the monopolist has about individual consumers. Closest to

the current paper is their ‘semi-anonymous’ case in which the latter period prices are bound by

an arbitrage constraint. The arbitrage constraint, which we also employ, states that any special

upgrade pricing that is offered cannot exceed the price offered to new consumers. They conclude

that there is no "leapfrogging" (leapfrogging is defined as the situation where all old customers do

not upgrade but some new customers buy) when production is costless (as in the case of software).

However, this does not match reality since leapfrogging is common in software product markets.

We explain how leapfrogging might occur and show that their results will form a special case of

our model. Bhattacharya et al(2003) considers optimal product sequencing and briefly visits the

upgrade pricing issue using an optimization program; we instead employ the subgame perfection

equilibrium concept. Additionally, in their paper, consumers of the initial version of the product

cannot purchase the improved version unless an upgrade price is offered just as in Dhebar(1994).

As stated earlier, we relax this assumption.

To summarize our contribution, we extend Dhebar(1994) & Bhattacharya et al(2003) by allowing old

customers to purchase the improved version even when upgrade pricing is disallowed. We generalize
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Kornish(2001) by considering upgrade pricing explicitly. We generalize Fudenberg & Tirole(1998)

by studying large upgrades and equilibrium consumer behavior in the context of upgrade costs. To

the best of our knowledge, ours is the first paper to address all these issues simultaneously.

There is further work on upgrades that our paper is not that close to. Ellison and Fudenberg(2000)

study the effects of upgrades on social welfare, particularly in the context of network external-

ity. Padmanabhan et al (1997) investigate the positioning decision across periods given network

externality effects for a fixed set of homogeneous consumers. Other recent work in this area in-

cludes Krishnan & Ramachandran(2008) that studies the impact of product design choices such as

modular upgradability on consumer upgrade behavior, and Mehra & Seidmann(2008) that looks

at upgrade introduction in the context of product lifecycle management. Sankaranarayanan(2007)

looks at effectiveness of the upgrade insurance policy that firms such as Microsoft have introduced.

Our modelling methodology is also related to the durable goods monopolist problem in the eco-

nomics literature. The earliest work in this area is by Coase(1972) who postulates that a monopolist

selling a durable good to rational consumers cannot capture monopoly profits. Consumers will look

ahead, anticipate a decreasing price trajectory and hence postpone their purchase till price equals

cost. Stokey(1981) models this process over an infinite horizon for a non-depreciating durable good

and confirms the results. Bulow(1982) uses a two-period model with a second hand market for a

durable good and shows that while a monopolist renter can capture monopoly profits, a monopolist

seller cannot do the same. Software renting (also known as Software-as-a-Service) is a new business

model practised by application service providers (ASPs) and may provide greater economic benefits

as compared to selling. However, while the benefits of renting in the software services context are

well accepted, its implementation suffers because of several issues such as data security, customiz-

ability and scalability (BusinessWeek, 2008). This fact ensures that while the renting of software

will continue to grow, the software product model is unlikely to be displaced anytime soon. The

economics of software and technology is also receiving increasing attention within the operations

management literature. Druehl & Schmidt(2008) and Liu et al(2007) are recent examples of such

work.

Our paper is also related to the literature on versioning of durable goods. Within our upgrade

problem, there are two embedded versioning problems. The first one is easy to observe: in a later

period, the firm offers a product of lower value (effectively) to the old customers who have already
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bought an earlier version. In this case, the two versions are directed towards consumers who differ

in their membership (whether they bought earlier) and do not get a choice to pick the alternative

product. The second versioning problem is as follows: in a later period, observe the consumers

who have bought the earlier period product. Within these consumers, some consumers upgrade to

the new version and hence have made use of a product of higher quality in a later period while

the consumers who do not upgrade have made use of a product of lower quality. Thus, these two

sets of consumers can be considered to have used two different versions of the product. Hence,

an understanding of the versioning literature adds value to our work. The academic literature in

this area begins with Mussa & Rosen(1978). With the advent of the information goods industry

(which includes software) in the late 90s, the topic of versioning has received renewed interest.

For instance, popular business literature such as Shapiro & Varian(1999) advocates versioning

through quality degradation as an important strategy for firms. However, academic research in

this context has provided mixed results. Bhargava & Choudhary(2001) show that for information

goods with zero marginal costs of production (as in software), versioning is not optimal for firms

with a standard vertical differentiation model. Krishnan & Zhu(2006) show that in the case of

development intensive products with negligible marginal costs, versioning may occur as a result

of differentiation along multiple dimensions and not quality degradation along one dimension. In

recent times, the lack of versioning at optimality when quality is unidimensional has been attributed

to the structure of the utility function. Bhargava & Choudhary(2008) and Anderson & Dana(2008)

both show that versioning is observed only when the following condition holds (necessary but not

sufficient): higher willingness to pay (WTP) consumers value the upgrade strictly higher relative

to the older version than lower WTP consumers. Anderson & Dana(2008) refer to this condition

as the increasing percentage differences condition. As we will see later, the existence of an upgrade

cost is critical to satisfying the increasing percentage differences condition and this ensures that

some consumers do not upgrade to the new version. This results in two intertemporal versions of

the product coexisting in the market even though the firm does not offer those two versions in the

same period.
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Period 1 Period 2

Firm offers product of 
value U1 at price p 

First period sales q is observed Second period sales: qu  & qn observed 

Discount factor δ attached to this period 

Firm offers product of 
value U2 at prices pu  & pn

Figure 2: Sequence of events

3 The Model

First, a brief description of the two-period model; Figure 2 illustrates. In the first period, the firm

selects a price p at which it offers the initial version of its software. In the second period, the firm

offers an improved version at price pn; however, consumers who purchased the initial version are

allowed to upgrade to the improved version by instead paying a price pu which is lower than or

equal to pn (but does not exceed pn). Consumers who decide to purchase the initial version enjoy

the software for both periods, and, if they choose to upgrade, they use the improved version in

the second period. Consumers who only purchase in the second period enjoy only one period of

use, but it is of the improved version. Of course, some (potential) consumers may choose not to

buy in either period. Note that the firm offers only one version of the product in either period.

This assumption may not be a perfect match with reality but ensures that we are able to focus on

the issues under consideration: the relationship between product improvement across time and the

pricing decision. Consumers in the second period do not have the option of purchasing from a second

hand market. This assumption stems from the software industry context which is characterized by

the near absence of secondary markets where used goods can be sold. In part, this is due to the

strict licensing agreements of software. But this also results from low utility for consumers from

old versions of the product in the face of rapid sequential innovation. At this point, it is important

to recognize that the incorporation of secondary markets in the analysis could change the results

significantly, but is not that relevant in the software industry context.
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Consumers: Consumers are heterogenous with respect to the value they ascribe to the software;

each is of a particular “type” that is denoted by θ, and the set of all consumers is represented as an

atomless spread of θ values that are distributed over the interval [0,1]. The cumulative distribution

function is given by F (θ) which we typically assume to be a uniform distribution although some of

our results can be extended to the larger class of IGFR distributions.

The software product: The critical modelling issue here is to distinguish between the two

versions of the software with respect to the consumers’ purchasing decisions. The initial and

improved version are represented by scalars U1 and U2 respectively (the subscripts denote the

period in which they are available) with U1 < U2; a consumer of type θ is assumed to enjoy a

baseline utility of u(θ, U) from using a product of value U . We assume the functional form of

u(θ, U) to be of the following type:

u(θ, U) = θU

This utility function is in the tradition of Mussa & Rosen(1978). However, unlike earlier models,

we assume that users incur a cost when they upgrade. This cost is not captured by special upgrade

pricing. This cost is different depending on whether the user upgrades to the new product from an

old product or has never purchased an older version before. Greater the jump in features in the

new product as compared to the current version that the consumer holds, greater is the upgrade

cost for the user. Denoting the upgrade cost by Cu:

Cu(UO, UN) = α · (UN − UO)

When a consumer upgrades from product of value UO (could be zero) to UN , the user upgrade cost

per unit increase in product features is α. This unit upgrade cost is common to all users, irrespective

of the willingness to pay (represented by consumer type θ). This fits a setting where all users need

to have the same hardware configuration to run the software effectively and hence require a similar

upgrade (α) on the hardware setup irrespective of how much they value the software product itself

(θ). One question that arises at this stage is whether every user is compelled to incur the upgrade

cost whenever a purchase is made. Relaxing this assumption is certainly possible but adds another

dimension to the model. Currently, a customer pays an upgrade cost α·(UN − UO) in order to enjoy

a utility of θUN as opposed to θUO. If a customer was given the option to not incur the upgrade

cost, the performance of the software may be compromised, thus resulting in a utility of θβUN
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where β < 1 is a deterioration parameter. This increases the number of potential cases significantly

without adding value to some of the key insights we seek to develop. Thus, in all further analysis,

we assume that all users will pay the upgrade cost if they wish to purchase the upgrade.

Structure of the game: This is thus a “game” between the firm and its potential consumer

base. We assume complete information and employ the subgame perfection equilibrium concept.

We model a setting where the firm is committed to offering what is considered "state-of-the-art" at

any given point in time. Thus, the firm’s selection of U1 is determined by the state of technology at

the beginning of period 1 and its selection of U2 is constrained by the rate of technological evolution.

As explained in the introduction, this rate of evolution is common knowledge to both the firm and

the consumers in the software industry. Hence the values of U1 and U2 are known to both the firm

and the consumers at the beginning of stage 1. Thus, this model has four decision stages: (1) firm

selects price p; (2) consumers make first period purchase decisions; (3) firm selects prices pn and

pu; and (4) consumers make second period purchase/upgrade decisions. As described before, the

costs involved in developing the product are fixed costs that occur before the pricing decision in

any period. As such, they play no role in the equilibrium pricing structure and hence, for the sake

of brevity, we omit them in further analysis. This is similar to Fudenberg and Tirole(1998). As is

standard practice, we solve for this game recursively using backward induction.

Arrangement of consumer segments: Although we need to solve recursively using backward

induction, an understanding of the arrangement of consumer segments is necessary. So we begin by

deriving consumers’ two-period buying decisions with all prices (p, pn, and pu) presumed known.

Four purchasing options are thus available to each consumer; these are listed below together with

identifying labels and expressions for ui, the surplus (utility net of price and upgrade cost) that a

consumer derives from selecting the option. We assume a discount factor δ for future time periods

and assume this to be common to both utilities and prices. It is also common to both the firm and

the consumers. The four purchasing options are:

1. “decline/decline” — Buy nothing — surplus u1 = 0

2. “buy/decline” — Buy the initial version in period 1 and use that version in both periods (i.e.,

decline to upgrade) — surplus is u2 = θ(1 + δ)U1 − α · U1 − p
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3. “buy/upgrade” — Buy the initial version and then upgrade in second period — surplus is

u3 = θ · (U1 + δU2)− αδ(U2 − U1)− α · U1 − p− δpu

4. “decline/buy” — Delay purchase until second period and then buy improved version — surplus

is

u4 = θδU2 − αδU2 − δpn

At equilibrium, consumers select the most fruitful of these options; i.e., each selects the option that

provides surplus of

max(u1, u2, u3, u4). (1)

Based on this analysis, we can derive different cases for the arrangement of consumer segments.

This is stated in the next lemma.

Lemma 1 The arrangement of segments along θ for any set of prices is as follows:

1) The decline/decline segment is always located towards the extreme left consisting of low

willingness-to-pay consumers.

2) The buy/upgrade segment is always located towards the extreme right consisting of high willingness-

to-pay consumers.

3)The decline/buy and buy/decline segments are located between the above two segments. Their

relative position depends on the relationship between U1
U2
and δ(Refer figures 3 and 4):

a) When δ
1+δ ≤

U1
U2

< 1 (minor to moderate upgrades) the decline/buy segment is to the left of

the buy/decline segment.

b) When 0 < U1
U2

< δ
1+δ (large upgrades) — the decline/buy segment is to the right of the

buy/decline segment.

The above lemma clarifies the relative positions of the segments for any given prices. Of course,

any one of the segments defined above could collapse to zero. Further, arranging the segments in
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θ 

Utility 
gain 

1 

u4 with slope=δU2 

u2 with slope=(1+δ)U1 

u3 with slope=U1+δU2 

1 4 2 3 t1 t2 t3 

Buy / upgradeBuy / decline Decline / buy

0

Figure 3: Ordering of customer segments (moderate upgrades)

a particular order enables the computation of the demand function for any given prices and thus

enables the calculation of equilibrium prices for a given set of primitive parameters. Label t1, t2

and t3 as the cut-off points that separate the different segments and are arranged by definition

in increasing order with t1 < t2 < t3. However, since the ordering of the segments is different

across the minor/moderate and large upgrade cases, the expressions for the cut-off points are

different in the two cases. These cutoffs are used to demarcate the segments in figures 3 and 4.

An interesting implication is the ordering of segments depending on whether upgrades are large or

minor/moderate. When upgrades are minor/moderate, the decline/buy segment is to the left of

the buy/decline segment. This means that the buy/decline segment and the buy/upgrade segment

are adjacent to each other ensuring that the first period demand constitutes a contiguous segment

in θ space. For large upgrades, the first period demand is no longer contiguous in θ space.

The above lemma and the figures elaborate on the consumer’s decision problem. We now describe

the firm’s decision problem.
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θ

Utility 
gain 

1 

u4 with slope=δU2 

u2 with slope=(1+δ)U1 

u3 with slope=U1+δU2 

1 4 2 3 t1 t2 t3 

Buy / upgrade Decline / buyBuy / decline 

0

Figure 4: Ordering of customer segments (large upgrades)
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Producer’s profit functions for both periods: Let πi denote the firm’s period-i revenue. The

firm’s second period revenue is:

π2 , puqu + pnqn (2)

subject to 0 ≤ qu ≤ q

0 ≤ pu ≤ pn

0 ≤ qn ≤ 1− q

where q is the first period demand, qn is the demand for the second period product by consumers

who do not own the previous version, and qu is the number of first period consumers who upgrade

to the new version. In addition to non-negativity, the constraints here ensure that only consumers

who purchased the initial version will upgrade and that the upgrade price does not exceed the

second period purchase price. The second period pricing constraint is reasonable for most cases

of off-the-shelf software purchase. It may not hold when consumers buy an operating system pre-

installed because in such cases, the price paid for the software by new users as part of the bundle

may be smaller than the open market upgrade price that old users pay. We restrict attention to

open market software purchases that may require compatible hardware upgrades but do not come

pre-installed with the hardware purchase. This still leaves open a large number of examples that

would come under the purview of our model.

Finally, an equilibrium is established by a set of prices that maximizes total profit over two periods,

π:

π , pq + δπ∗2 (3)

subject to 0 ≤ q ≤ 1

p ≥ 0

where π∗2 is equilibrium profit for the firm in the second period subgame.

4 Equilibrium Analysis with θ ∼ Uniform[0, 1]

Now that we have set up the consumer’s decision problem and the producer’s objective function,

we are ready to analyze the equilibrium consumer behavior and pricing structure. However, to
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keep the analysis tractable without losing insight, we restrict the consumer type to be uniformly

distributed. This assumption will be relaxed in the next section. We begin with an analysis of large

upgrades and then move on to moderate upgrades. Note that all prices and demands at equilibrium

are denoted with an asterisk.

4.1 Large Upgrades

While the arrangement of consumer segments was described previously, the analysis of subgame

perfection also requires imposition of second period equilibrium conditions. These conditions ba-

sically ensure that the firm has no incentive to defect from its first period position (since that

would mean that the consumers would anticipate such a defection and change their behavior ac-

cordingly). Applying these conditions and solving for subgame perfect equilibria provides us with

the final solution. Define α∗ by the following expression:

α∗ =Min

∙
Max

∙
8x− 8x2 − δ + 9xδ − 12x2δ + 4x3δ
8x− 8x2 − δ + 21xδ − 20x2δ + 4x3δ , 0

¸
, 1

¸
where x = U1

U2
. We state the equilibrium results using α∗ as a threshold.

Proposition 1 When the firm offers a large upgrade
³
0 < U1

U2
< δ

1+δ

´
, there exists a unique sub-

game perfect equilibrium in pure strategies with the following conditional outcomes:

a) If 0 ≤ α < α∗, then the firm does not offer upgrade pricing but all old customers upgrade.

There are some new consumers.

p∗u = p∗n & q∗u = q∗ & q∗n > 0

b) If α∗ ≤ α < 1, then the firm is indifferent towards an upgrade pricing strategy since no new

consumers buy the product. Not all old customers upgrade to the new product.

q∗n = 0 & q∗u < q∗

Part a) of the proposition is essentially a replay of the result from Kornish(2001). Thus, for large

upgrades, when upgrade costs are low, we observe an equilibrium where the firm can credibly

commit to future prices only when no upgrade pricing is offered. As the upgrade cost increases
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beyond a threshold (which is a function of both product improvement and discount factor), it

allows credible commitment even with upgrade pricing (although the firm is indifferent towards

whether upgrade pricing should indeed be offered, there may be behavioral reasons to do so). This

occurs because of the following: high upgrade cost acts as a truncation in the potential market for

the product; this enables the firm to credibly convey its lack of incentive to pursue new but lower

"willingness to pay" consumers in the second period, thus enabling the use of an upgrade price.

From an empirical validation perspective, this provides us with the following testable hypothesis:

if upgrade pricing is used by a firm even for large upgrades, it potentially indicates the presence of

high upgrade costs. However, a point to note here is that the threshold α∗ hits zero for very low

U1
U2
(typically < 0.1). At such high levels of product improvement, the only possible equilibrium for

the entire range of non-zero α is the one where upgrade pricing can be utilized. On the other hand,

as δ approaches zero, α∗ hits 1 and hence only the equilibrium without upgrade pricing is optimal

for all values of the upgrade cost. In fact, α∗ is decreasing with δ for any given U1
U2
as can be seen

from the sign of the derivative (set U1
U2
= x):

dα∗

dδ
= − 32x2 (3− 2x)(1− x)

(δ + x(−8− 21δ + 4x(2 + δ (5− x))))2
< 0

since x = U1
U2

< 1. An increase in the discount factor causes a decrease in α∗ and also increases

the range over which an upgrade is categorized as large (since δ
1+δ increases). This enables the

firm to offer upgrade pricing over a larger region in
³
U1
U2
, α
´
space. The reasoning behind this is as

follows: as the emphasis on the second period increases (indicated by an increase in discount factor),

the equilibrium which extracts greater revenue in the second period through upgrade customers

becomes more favorable. Overall, we conclude that upgrade costs play a strong role in determining

the nature of the equilibrium for large upgrades.

The next section addresses a similar analysis for minor/moderate upgrades.

4.2 Minor to Moderate Upgrades

We analyze the equilibrium outcomes when the firm offers a minor to moderate upgrade.

Proposition 2 When the firm offers a minor/moderate upgrade
³

δ
1+δ ≤

U1
U2

< 1
´
,
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Figure 5: Equilibrium zones in
³
U1
U2
, α
´
space for δ = 0.5

1) There is a unique subgame perfect equilibrium in pure strategies.

2) There exist 4 regions in
³
U1
U2
, α
´
space such that the following constraint possibilities are observed:

High
U1
U2
, High α = Zone A = {p∗u < p∗n, q

∗
u < q∗}

High
U1
U2
, Low α = Zone B = {p∗u < p∗n, q

∗
u = q∗}

Low
U1
U2
, Low α = Zone C = {p∗u = p∗n, q

∗
u = q∗}

Low
U1
U2
, High α = Zone D = {p∗u = p∗n, q

∗
u < q∗}

The different zones and the thresholds that define them are described in figure 5 for the specific

case of δ = 0.5.

Each of the labels A, B, C & D is described in proposition 2. The label "Large A" corresponds

to the equilibrium outcome in the large upgrade case when α > α∗ while the label "Large B"

corresponds to the equilibrium outcome when α ≤ α∗. When the upgrade cost is low (including
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the case α = 0), the firm is able to price at equilibrium such that all old customers upgrade and

hence "Large A" applies. Thus, upgrade cost is a critical factor in determining whether all old

customers upgrade. Within minor/moderate upgrades, whether upgrade pricing will be offered

or not depends on the level of product improvement. If product improvement is minor, the firm

has to offer an upgrade discount in order to get older (but higher type) consumers to shift to the

new product. But such a strategy is not completely effective when upgrade costs are high (Zone

A). If product improvement is not minor but moderate, the optimal unconstrained upgrade price

exceeds the unconstrained new price offered to newer (but low type) consumers. Consequently,

the arbitrage constraint is violated and the firm has to offer the same price to all consumers in

period 2 (Zones C & D). However, when upgrade costs are low, the firm hits the upper limit on

the number of upgrade consumers and this changes the product improvement threshold at which

upgrade pricing becomes optimal (Zone B). A general observation based on combining the results

for minor, moderate and large upgrades is that at high upgrade costs (α > α∗) an upgrade pricing

strategy is not optimal for a middle range of product improvement (zones "Large B", C & D).
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The arrows indicate movement of the thresholds with an increase in the discount factor δ. Based on

the equilibrium analysis, we can compare how these regions change for minor/moderate improve-

ments with a change in the discount factor δ. A similar analysis for large upgrades has already

been described right after proposition 1.

Proposition 3 When the firm offers a minor/moderate upgrade
³

δ
1+δ ≤

U1
U2

< 1
´
, the discount

factor δ affects the upgrade pricing decision in the following way:

1) When α is low enough such that all old customers upgrade to the new product, increase in the

discount factor has no impact on the upgrade pricing decision (Zone B does not change) but has a

negative impact on the decision to not offer upgrade pricing (Zone C shrinks). At δ = 1, Zone C

completely disappears.

2) When α is high enough such that not all old customers upgrade to the new product, there exists

a region in
³
U1
U2
, α
´
space such that the firm does not offer upgrade pricing even when δ = 1 (Zone

D area > 0).

An increase in the value of the discount factor indicates a greater value attached to future outcomes.

When α is low and all old customers can be made to upgrade, the ability to price discriminate

between old and new consumers is not impacted by the discount factor. This ability to price

discriminate is significantly muted when upgrade cost is high and hence it is possible to see no

upgrade pricing even when δ = 1.

Figures 6 and 7 tabulate the closed form expressions for market sizes and prices respectively in the

different zones. A quick scan of the above tables reveals the general trends in market sizes and

prices. For instance, the number of new consumers is zero only for the large upgrade case with

high upgrade costs. In all other cases, it has a negative relationship with respect to first period

sales. These expressions can be used to numerically compute the equilibrium profit for the firm

with different parameter values. Figure 8 plots the profit of the firm under 3 different scenarios.

The three scenarios are evaluated at U1
U2
= 0.1, 0.45 and 0.8 respectively. These scenarios cover the

three possible upgrade cases: large, moderate and minor respectively. For a given set of parameters

U1
U2
and α, the profit is an increasing function of U2. In order to make the three cases comparable,

we set U2 = 1. Thus, the maximum possible profit in each of the three cases is equal. However,

19



Zones q∗ qu
∗ qn

∗

A 21U1−U22U2−U1
41U1−3U2

1−
2

1−q∗−
2

B 21−1−U1
4U1U2

q∗ 1−q∗−
2

C 2U1
21−3U1U2U2

2− 2U1
21−4U1U2U2

2

2 U1
21−2U1U2U2

2 q∗ 1−q∗−U1
U2

D 22U2−U11U1−U2U2−U1

811U1U2−41U1
2−7U2

2
21−U2−U1q∗U2

22U2−U1 
21−U2−q∗3U2−U1

22U2−U1

Large  ∗ 21−U2−U1
3U2−2U1

q∗ 21−U2−q∗3U2−U1
2U2−U1

Large ≥ ∗ 1 −  1−
2 0

Figure 6: Equilibrium market sizes for different conditions

Zones p∗ pu
∗ pn

∗

A 1−q∗21U1−U2 U2−2U1
2

1−U2−U1
2

1−q∗−U2
2

B 1−q∗21U1−U2 U2−2U1
2 1 − q∗ − U2 − U1

1−q∗−U2
2

C 1 − q∗U1 − 1 − U1 1 − q∗ − U2 − U1 1 − q∗ − U2 − U1

D
21−q∗1U1−U2

2 
21−−q∗ U2U2−U1

22U2−U1
 U2−U1 

2

21−−q∗ U2U2−U1
22U2−U1

21−−q∗ U2U2−U1
22U2−U1 

Large  ∗ 1 − q∗U1 − 1 − U1
1−U2U2−U1 

3U2−2U1

1−U2U2−U1 
3U2−2U1

Large ≥ ∗ U1
1−U2−U1

2 Arbitrarily high ≥ pu
∗

Figure 7: Equilibrium prices for different conditions
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Figure 8: Firm profit under different conditions

the point to compare would be the extent to which the firm can capture this profit at equilibrium

given the strategic behavior of customers. Given a value of U2 and the ability to modify U1
U2
and/or

α (if possible), what strategy would prove profitable to the firm and what pricing mechanism does

the firm use to achieve this profitability? For further ease of comparison, the U1
U2
values are chosen

such that the jump in values across the three cases is equal to 0.35. At the three given values of

U1
U2
, the equilibrium traverses through zones (Large B, Large A), (C, D) & (B, A, D) respectively

as α increases. This fact can be easily verified from figure 5.

A direct observation from figure 8 is that in each of the three cases, the profit is a decreasing

function of α. This should not be a surprise since an increase in α results in a decrease in utility

and hence exerts pressure on the ability of the firm to extract consumer surplus through prices. Of

more interest is how profit varies depending on the level of U1U2 . Profit increases as
U1
U2
increases: the

highest curve corresponds to U1
U2
= 0.8 while the lowest curve corresponds to U1

U2
= 0.1. Thus, minor

upgrades provide higher profit as compared to either moderate or large upgrades, given that the

eventual second period product U2 is the same in all three cases. This indicates that given a target

quality level in the second period, offering a significant fraction of the eventual product quality in

the first period reduces the impact of strategic customer behavior and allows the firm to charge

higher prices. Hence the firm is better off increasing U1
U2
if possible given a target value of U2, at all
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values of the upgrade cost α.

Although the profit is increasing in U1
U2
, the increase is non-linear. Although U1

U2
jumps by only

0.35 across the three cases, the jump in profit is substantial as we move from moderate to minor

upgrades. Note that the significant difference in pricing strategy between moderate and minor

upgrades is the ability to offer upgrade prices. Thus, the ability to offer upgrade prices significantly

benefits the firm’s profitability. This is true for a large range of α but as α increases further,

the firm moves into region D where upgrade pricing is not feasible and this benefit dissipates and

eventually disappears as α reaches 1. Combining the above observations reveals that decreasing

α and increasing U1
U2
provide the firm with the ability to offer upgrade prices and hence increase

profitability given a target quality level U2 in the second period.

The above numerical results address the impact of various parameters on the profitability of the

firm but do not reveal the overall market coverage impact of upgrade pricing. For instance, a

public authority such as the government may be interested in ensuring that a particular software

technology is used by a larger percentage of the population (irrespective of whether a specific

consumer uses the older or later version). In such cases, it is important to find out the impact of

upgrade pricing on the overall market coverage (given by q∗+ q∗n). Why might one expect upgrade

pricing to have an impact on this decision? When upgrade pricing is disallowed, new consumers

are likely to get a lower price (as compared to the situation when upgrade pricing is allowed)

and hence more of them may purchase the product. This contributes to an increase in market

coverage. However, old customers are likely to get a higher upgrade price (since they no longer

get a special discount). Given that consumers have foresight, they may choose not to purchase in

the first period if they do not anticipate the appropriate upgrade prices. Consequently, this leads

to reduced market coverage. The direction of the ultimate outcome in terms of market coverage

is not clear. Thus, while disallowing upgrade pricing will definitely lead to lower profits for the

firm (since we are adding a binding constraint to a concave optimization problem), the impact on

market coverage needs to be examined. The approach towards evaluating this is to find the market

coverage when upgrade pricing is disallowed for those cases where upgrade pricing is optimal for

the firm. In order to keep the analysis tractable, we evaluate this at δ = 1. Further, we analyze

this only for minor/moderate upgrades since even when α > α∗, the firm is indifferent towards

upgrade pricing for large upgrades and hence disallowing upgrade pricing has no real impact on
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market coverage. The next proposition details the results.

Proposition 4 When the firm offers a minor to moderate upgrade, disallowing upgrade pricing

increases the overall market coverage irrespective of the magnitude of upgrade cost parameter α.

Note the difference in outcomes depending on the level of product improvement. For large upgrades,

disallowing upgrade pricing for the case α > α∗ does not affect market coverage since the firm can

set the two prices equal without any loss in profit (since the firm earns its entire second period

revenue from upgrade consumers). This is no longer true for minor to moderate upgrades, where

the loss in first period consumers is more than compensated by the acquisition of new consumers

due to lower second period price.

An observation discussed earlier is that there exists a threshold on α such that when α is below this

threshold, we find that all old customers upgrade to the new product. The next section analyzes

this result by generalizing consumer type beyond the uniform distribution.

5 Equilibrium Analysis for Minor to Moderate Upgrades with θ ∼

IGFR[0, 1]

As stated in the previous section, we extend the results to IGFR distributions with a study of

consumer upgrade behavior as the primary motive. The next proposition extends previous results

for the minor/moderate upgrade case to IGFR distributions on θ.

Proposition 5 When the firm offers a minor to moderate upgrade

1) At any first period price p, there exists a unique pure strategy equilibrium in the second period

subgame. At this equilibrium, there exists a threshold on U1
U2
above which the firm offers an upgrade

price strictly lower than the new price:

p∗u < p∗n

2) There exists a subgame perfect equilibrium in pure strategies. At this equilibrium, α > 0 is

a necessary but not sufficient condition to ensure that not all old customers upgrade to the new
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product.

q∗u < q∗

Fudenberg and Tirole (1998) have analyzed the above results in the absence of upgrade costs and

find that no leapfrogging occurs when production is costless. They define leapfrogging as a situation

in which not all old customers upgrade and some lower type consumers buy the new version of the

product directly. Their result does not reflect reality in the sense that software products fit the

example of costless production and yet frequently display leapfrogging in their consumer markets.

Our result provides a viable explanation for the presence of leapfrogging (which requires that not

all old customers upgrade) in software markets by showing that a necessary condition for this to

occur is the presence of positive user upgrade costs. This can be further verified by borrowing from

the versioning literature. Bhargava & Choudhary(2001b) and Anderson & Dana(2006) both show

that versioning is observed only when the following condition holds (necessary but not sufficient):

∂

∂θ

µ
u(θ, UH)

u(θ, UL)

¶
> 0 (4)

where UL is the lower value version and UH is the higher value version. This condition basically

states that higher type θ customers value the upgrade strictly higher relative to the older version

than lower type θ customers. Anderson & Dana(2006) refer to this condition as the increasing per-

centage differences condition. This condition can never hold for a utility function that is separable

in θ and U since:
u(θ, UH)

u(θ, UL)
=

f(θ) · g(UH)

f(θ) · g(UL)
=

g(UH)

g(UL)
independent of θ

In the second period, observe customers q who buy the first period product U1. Within these q

customers, the qu customers who upgrade to U2 have made use of a product of quality U2 in period

2 while the (q − qu) customers who do not upgrade have made use of a product of quality U1 in

period 2. Thus, these two sets of customers can be considered to have used two different versions

of the product. This also implies that the condition qu < q is equivalent to the condition where two

different versions are sold to the q customers. When qu = q, offering two versions is not optimal for

the firm. Further, these customers have already incurred the upgrade cost in period 1 and do not

have to incur any further upgrade cost if they simply use U1. Checking for the versioning condition

specified in inequality (4):

u(θ, U2)

u(θ, U1)
=

θ · U2 − α(U2 − U1)

θU1
=

U2
U1
−
³α
θ

´µU2 − U1
U1

¶
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∂

∂θ

µ
u(θ, U2)

u(θ, U1)

¶
=
³ α
θ2

´µU2 − U1
U1

¶
> 0 for α > 0

The increasing percentage differences condition (which requires α > 0 in our model) is a necessary

condition for versioning but is not sufficient. This corresponds exactly to the result shown in

Proposition 5.

6 Concluding Remarks

Firms have adopted different strategies in dealing with strategic consumer behavior caused by

rapid technological innovation. One such strategy is for firms to price discriminate by offering

old customers special upgrade prices. The objective of our research is to understand whether

this is effective across all levels of product improvement while incorporating knowledge about the

consumers’ willingness-to-pay and operational issues such as user upgrade costs. Our results reveal

that offering upgrade prices is not always optimal. Upgrade pricing is useful for large upgrades

in the context of high user costs by enabling credible commitment to a strategy where no new

consumers are acquired. It is also effective when upgrades are minor, since old customers have

to be given an incentive to adopt upgrades that are only minor improvements over older versions.

However, for moderate upgrades, special upgrade pricing is not effective and the firm is better

off offering the same symmetric price to all consumers. Thus, when user upgrade costs are high,

upgrade pricing is not effective for a middle range of product improvement. The exact product

improvement threshold at which upgrade pricing becomes effective is a function of whether all old

customers upgrade to the new product. This upgrade behavior is governed by the user upgrade

cost. Hence, user costs also play an important indirect role in the effectiveness of upgrade pricing.

Upgrade pricing also has a significant impact on profitability. If the firm had a fixed quality target

to achieve over a longer horizon, the ability to offer upgrade prices ameliorates strategic consumer

behavior and increases profits significantly. However, making upgrade pricing viable requires some

flexibility in the quality offered in earlier time periods in addition to the ability to reduce the

upgrade costs. If an important social objective is to increase the overall market coverage for a

particular type of product (this is analogous to decreasing the deadweight loss), evaluating the

impact of upgrade pricing on coverage is important. Our analysis reveals that disallowing upgrade

pricing does not change market coverage when the firm offers a large upgrade while it increases
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coverage when the firm offers a minor to moderate upgrade. This provides a prescription for policy

makers who can make the appropriate decisions.

We apply our results to some of the examples that were discussed in the introduction. For example,

almost everyone agrees that Vista comes with significant hidden upgrade costs and Microsoft cer-

tainly claims that Vista is a large upgrade over XP. Given that they also offer upgrade pricing, it is

a reasonable conjecture that "new sales" of Windows Vista are negligible. Essentially, a consumer

who postponed purchase of Windows XP is unlikely to buy a new copy of Vista. At the same

time, not all XP users are likely to upgrade to Vista (a situation not far from reality). Any new

sales for Vista can occur due to an increase in the potential market caused by the arrival of a new

cohort of consumers. We do not model such a scenario but this would be a productive agenda for

future research. On the other hand, our experience with Matlab reveals low upgrade costs. Yet, a

new version of Matlab is offered at the same price to all consumers. Our results indicate that this

would happen only when the upgrade is moderate or large and that most old customers are likely

to upgrade to the new version.

While the evidence in the preceding paragraph is merely anecdotal, it would be worthwhile to

empirically evaluate the validity of the model conclusions. Consumer upgrade costs and the level

of product improvement between any two versions could both be determined by polling relevant

experts who evaluate such products. For example, the introduction of this paper lists the upgrade

cost that a user incurs when purchasing Windows Vista. This upgrade cost was evaluated by

PC World. Similar figures could be estimated for other products. As for product improvement,

websites such as zdnet.com and cnet.com list ratings on a 10-point scale for various products. Recent

empirical studies in this area such as Ghose & Sundararajan(2007) use such ratings to evaluate

quality differences between versions. In order to test hypotheses concerning these parameters

and the equilibrium upgrade pricing / consumer behavior, we need pricing and consumer upgrade

information. Pricing information is relatively easy to get by observing prices at retailers, both

online and "brick and mortar". Consumer upgrade information is available with the firm (which

aggregates this information across retailers). While we make no claims about the ease of getting

such data, it is not impossible to conceive of a study which evaluates the implications of our model.

As always, our results are restricted by the reality of our assumptions. Restricting the analysis

to the software industry might seem to make the problem domain narrow since upgrades can and
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do occur in many other industries and product categories. Some of the results derived can be

generalized to other industries but with some caution. The reason for this caution rests on the key

differences that software product markets display when compared to that of other products. For

software products, the variable cost of producing a single copy of the product is negligible. Most of

the costs are embedded in the fixed costs of development and testing. Another important aspect

of our model setup is that many of our assumptions about the market stem from observations of

individual consumers of software. Clearly, enterprise contexts may deviate from these conditions

and may lead to different results. Most of our results can be interpreted clearly in the individual

user context. One potential area of research is to generalize the information structure available

to the consumer in terms of product improvement and future prices. Consumers may not have

complete information about future producer strategies. Future research will have to explore the

mechanisms that firms and consumers will use to convey and acquire such private information

respectively.
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8 Appendix

Proof of Lemma 1

Each of the functions inside the maximization equation (1) is linear, increasing in θ, and decreasing

in the prices. Thus, the function (1) is convex non-decreasing piecewise linear in θ with at most

four pieces. This implies:

• The [0, 1] segment is partitioned into at most four intervals such that the consumers with θ

values within each interval make the same purchase decision.

• The breakpoints between these intervals are determined by the prices together with U1 and

U2.

• The length of each interval is also a fraction of the potential consumers who select that option.

Let M denote the total number of potential consumers. Let [a, b] ⊆ [0, 1] with l = |b− a| ≤ 1

be an interval of length l. This corresponds to demand of M · (F (b)− F (a)). For a uniform

distribution on θ, this corresponds toM.l. For simpler analysis, thisM is set identically equal

to 1; this is a matter of scaling and is without loss of generality.

• The segments are arranged (from left to right along the θ axis) in increasing order of slope
∂ui
∂θ . (as is standard in vertical differentiation models. See Mussa & Rosen(1978) for more

details)

• The breakpoints between segments are at the θ values for which consumers would be indif-

ferent between the options that correspond to two adjacent segments.
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• These intervals can be defined by t1,t2, and t3 with 0 ≤ t1 ≤ t2 ≤ t3 ≤ 1 where t1 is the

supremum θ of consumers who don’t buy anything, t3 is the infimum θ of consumers who

both buy and upgrade, and t2 is the point of indifference between the other two options. It

is of course possible for any of the segments to be empty. This would be represented by one

or more of the inequalities just above holding as equalities.

• Under our assumptions, the decline/decline interval is leftmost, the buy/upgrade interval is

right-most, and the ordering of the buy/decline and decline/buy intervals depends on the ratio

of U1, and U2.

Proof of Proposition 1

a) Given the consumer segmentation in figure 4, in period 2, the firm sees two discontinuous

segments that bought the first period product ([t3, 1] and [t1, t2]). Consequently, the firm can

optimally set the following prices in the second period:

pu = t3 · (U2 − U1) − α and pn = t2 · U2 − α(U2 − U1) (5)

Next, we layout the conditions for rational consumer behavior in the first period for large upgrades

by writing the indifference conditions for the three cut-off points t1, t2 and t3:

t1 =
p

(1 + δ)U1
+

α

1 + δ
, t2 =

δpn − p

δU2 − (1 + δ)U1
+ α

µ
δU2 − U1

δU2 − (1 + δ)U1

¶
(6)

t3 =
p− δ(pn − pu)

U1
+ α (1− δ)

The expressions from (5) and (6) then solve in terms of a given p, to give t1 = t2 = t3 which

further implies that q∗u = q∗ and q∗n = 0. This violates the starting assumption that each of the four

possible segments is non-zero. Hence, an equilibrium can only be evaluated by collapsing either one

or both of the buy/decline and decline/buy segments. In either case, the first period sales q becomes

a contiguous segment. The critical issue to be examined is whether the firm has an incentive in

the second period to deviate from its earlier position once first period demand is revealed to be

contiguous. We write out the second period profit function for the firm (given by equation (2) for

any first period contiguous sales q:

π2 = pu

µ
1− α− pu

U2 − U1

¶
+ pn

µ
1− q − α− pn

U2

¶
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Solving for optimal prices, we get:

p∗u = (1− α)

µ
U2 − U1
2

¶

p∗n = (1− q − α)

µ
U2
2

¶
(7)

Substituting back into the demand function, we get the market sizes for the unconstrained problem:

q∗u =
1− α

2
(8)

q∗n =
1− q − α

2
(9)

An examination of these expressions reveals that we cannot have q∗u = q and q∗n = 0 simultaneously

for α < 1. So only one of them will be satisfied.

Case 1: q∗u = q

We set the expression for qu given in equation (8) equal to q. This means that the firm sets first

period price p such that given optimal pricing (as anticipated by consumers) in period 2, a demand

of q = 1−α
2 is observed. Substituting for q in the price equation (7) for p∗n:

p∗n =
1− α

4
· U2 < (1− α)

µ
U2 − U1
2

¶
= p∗u for large upgrades

Hence, we must have a symmetric price across both segments. Setting p∗u = p∗n = p∗s in the second

period profit function (given by equation (2)):

π2 = ps

µ
2(1− α)− q − ps

U2 − U1
− ps

U2

¶
The optimal second period price is:

p∗s = [2(1− α)− q]

µ
U2 (U2 − U1)

2 (2U2 − U1)

¶
The number of upgrade consumers is given by the demand function:

q∗u = 1− α− p∗s
U2 − U1

Substituting for p∗s and solving for q by setting q
∗
u = q provides us with the equilibrium value for q:

q∗ =
2(1− α)(U2 − U1)

3U2 − 2U1
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Since all old customers upgrade, we have the following: t1 = t2 and t3 = 1 − q. Writing the first

period indifference condition for the marginal consumer t3:

(1− q)δU2 − αδU2 − δp∗s = (1− q)(U1 + δU2)− αδ(U2 − U1)− αU1 − p− δp∗s

Solving for first period price p:

p∗ = (1− q∗)U1 − α(1− δ)U1

All prices and quantities can now be computed. The overall profit function is:

π∗case1 = p∗q∗ + δp∗s (q
∗ + q∗n) (10)

Case 2: q∗n = 0

We set the expression for qn given in equation (9) equal to 0. This means that the firm sets first

period price p such that given optimal pricing (as anticipated by consumers) in period 2, a demand

of q = 1 − α is observed. Since qu =
1−α
2 , the constraint q

∗
u < q∗ is satisfied. Also, no new

consumers are acquired for any non-zero price p∗n. Thus, raising price p
∗
n such that the arbitrage

constraint is satisfied does not affect firm profit. Hence p∗n can be any value equal to or above

p∗u = (1− α)
¡
U2−U1
2

¢
. Since no new consumers buy the product, we have the following: t2 = t3

and t1 = 1− q. Writing the first period indifference condition for the marginal consumer t1:

0 = (1− q)(1 + δ)U1 − αU1 − p

Simplifying, we get:

p∗ = αδU1

All prices and quantities can now be computed. The overall profit function is:

π∗case2 = p∗q∗ + δp∗uq
∗
u (11)

Given that the firm sets the first period price p before consumers make purchase decisions, the firm

can pick the equilibrium that provides higher profit by using first period price as a signal. Only a

comparison of the profits across the two potential equilibria can reveal the optimal strategy for the

firm. First, observe the following:

π∗case1 is a convex function of α
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π∗case2 is either a convex or a concave function of α.

Setting π∗case1 = π∗case2 and solving for α provides the following roots:

α =
8x− 8x2 − δ + 9xδ − 12x2δ + 4x3δ
8x− 8x2 − δ + 21xδ − 20x2δ + 4x3δ

where x = U1
U2
and

α = 1

At α = 0, π∗case1 > π∗case2.

Define α∗ such that:

α∗ =Min

∙
Max

∙
8x− 8x2 − δ + 9xδ − 12x2δ + 4x3δ
8x− 8x2 − δ + 21xδ − 20x2δ + 4x3δ , 0

¸
, 1

¸
Putting all these facts together, we get:

π∗case1 ≥ π∗case2 for α ≤ α∗

π∗case1 < π∗case2 for α > α∗

This gives us the required result.

Proof of Proposition 2: 1) We first solve this problem without regard for the constraints and

then check to see that they are not violated. The profit function for second period given by equation

(2):

π2 = pu

µ
1− α− pu

U2 − U1

¶
+ pn

µ
1− q − α− pn

U2

¶
which is concave as shown by:

∂2π2
∂p2n

=
−2
U2

< 0 and
∂2π2
∂p2u

=
−2

U2 − U1
< 0

By inspection, π2 is also separable in pu and pn, so solving it is a matter of setting the respective

partials to zero.
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Setting ∂π2
∂pn

= 0 gives p∗n, the optimal
1 value for pn and hence q∗n, the optimal value for qn:

p∗n = (1− q − α)
U2
2
; q∗n = (1− q − α)

1

2
(12)

Setting ∂π2
∂pu

= 0 gives p∗u, the optimal value for pu and hence q
∗
u, the optimal value for qu:

p∗u = (1− α)

µ
U2 − U1
2

¶
and q∗u =

1− α

2
(13)

The constraint qu ≤ q has thus far been ignored, so the last expression is only valid when q ≥ 1
2 . It

then follows from the concavity of π2 that if q ≤ 1
2 then q∗u will exactly equal q. That is:

q∗u =Min

µ
1− α

2
, q

¶
. (14)

Also, by inspection, p∗u and p∗n are always ≥ 0 as required. The same holds true for q∗u and q∗n.

Writing out the equilibrium second period profit as function of first period parameters:

π∗2 = (1− α)2
µ
U2 − U1
4

¶
+ (1− q − α)2

U2
4

Differentiating this twice with respect to q:

∂π∗2
∂q

= − (1− q − α)
U2
2

∂2π∗2
∂q2

=
U2
2

To solve for the producer’s problem of selecting the first period price, we derive the demand curve

for the first period given optimal pricing in the second period. Substituting the price p∗n from

equation (12) into the indifference equation for t2 (= 1− q):

(1− q)δU2 − αδU2 − δ (1− q − α)
U2
2
= (1− q)(1 + δ)U1 − αU1 − p

Solving for p:

p = (1− q)

∙
(1 + δ)U1 −

δU2
2

¸
+

αδU2
2
− αU1

Substituting this into π using equation (3):

π = (1− q)q

∙
(1 + δ)U1 −

δU2
2

¸
+ α

µ
δU2 − 2U1

2

¶
q + δπ∗2.

1Throughout these proofs, the values derived are optimal given that customers’ purchasing decisions are as implied

by the thresholds t1, t2, and t3 as described in the main text. Since these thresholds specify consumers’ optimal

purchasing behavior in response to posted prices, these optimal prices are also the equilibrium prices.
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Taking the partial twice with respect to q :

∂π

∂q
= (1− 2q)

∙
(1 + δ)U1 −

δU2
2

¸
+ α

µ
δU2 − 2U1

2

¶
+ δ

∂π∗2
∂q

(15)

∂2π

∂q2
= −(2(1 + δ)U1 − δU2) + δ

∂2π∗2
∂q2

= −2(1 + δ)U1 + δU2 + δ
U2
2

= −1
2
(4(1 + δ)U1 − 3δU2) < 0

Concavity of the overall objective function in q along with linear constraints ensures a unique

equilibrium solution in the first period. For every q, there is exactly one equilibrium solution in

the second period. Consequently, we have a unique subgame perfect equilibrium.

2) Continuing from part 1) of the proposition, concavity ensures that setting the first derivative to

zero in equation (15) maximizes profits:

q∗ =
2 [(1 + δ)U1 − δU2] + 2α(δU2 − U1)

4 (1 + δ)U1 − 3δU2

Using this expression in the second period constraints given by equation (2) gives us lower and

upper bounds on α :

α0 =
1

1 + 4
³
U1
U2

´ ≤ α ≤
2δ + 4(1 + δ) ·

³
U1
U2

´2
− (2 + 5δ) ·

³
U1
U2

´
2δ + 4(1 + δ) ·

³
U1
U2

´
− (2 + 3δ) ·

³
U1
U2

´ = α00

When α obeys the bounds strictly, we get non-binding second period constraints (Zone A).

When α violates both bounds, we must have α00 ≤ α0 and since α0 < α < α00 for non-binding

constraints, the second period constraints must be binding when α00 ≤ α ≤ α0 (Part of Zone C)

Setting α0 = α00 and solving for U1
U2
gives us three points of intersection:

U1
U2
= 0,

3

4

µ
δ

1 + δ

¶
and

1

2

Of these, only U1
U2
= 1

2 is over
δ
1+δ and we need to consider only this comparison because

U1
U2
∈ [ δ

1+δ , 1]

for minor to moderate upgrades. This gives us a clean bifurcation in terms of U1
U2
for the binding

and non-binding constraint regions.

When we have α ≤Min(α0, α00), we must have α ≤ α0. When this is true, we know that q∗u = q∗.
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Setting qu = q, we can derive the optimal upgrade price in terms of q:

p∗u = (1− q − α)(U2 − U1) (16)

Using this value of p∗u, we can rewrite the second and first stage profit at equilibrium second period

pricing for α ≤ α0 as:

π∗2 = (1− q)q(U2 − U1)− αq(U2 − U1) + (1− q − α)2
U2
4

(17)

π = (1− q)q
(2(1 + δ)U1 − δU2)

2
+ α

µ
δU2 − 2U1

2

¶
q + δπ∗2

Taking the derivatives with respect to q and simplifying:

∂2π

∂q2
= −

µ
2U1 + δ

U2
2

¶
< 0

Concavity ensures that setting the first derivative equal to zero gives us a profit maximizing solution:

q∗ =
(1− q∗) [2 (1 + δ)U1 − δU2] + α (δU2 − 2U1)

2
(18)

Applying the second period pricing constraint pu < pn:

(1− q − α)(U2 − U1) < (1− q − α)
U2
2

Simplifying:
U1
U2
≥ 1
2

(19)

This marks the remaining part of Zone C and entire Zone B.

Finally, we have the case where α ≥Min(α0, α00). For this case, we must have α ≥ α00. When this

is true, we know that p∗u = p∗n. We set pu = pn = ps in the second stage of the model and solve the

unconstrained problem using equation (2):

π2 = ps

³
1− α− ps

U2−U1

´
+ ps

³
(1− q)− α− ps

U2

´
π2 is concave in ps as shown by ∂2π2

∂p2s
= −2( 1

U2−U1 +
1
U2
) < 0

Setting ∂π2
∂ps

= 0 gives p∗s, the optimal value for ps:

p∗s = (2(1− α)− q)

µ
U2(U2 − U1)

2 (2U2 − U1)

¶
(20)
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This now enables us to calculate the expressions for qu and qn as functions of q.

The analysis has heretofore ignored the constraint qu ≤ q. Applying this constraint, we find that:

q ≥ 2 (1− α) (U2 − U1)

3U2 − 2U1

It follows from the concavity of π2 that if q ≤ 2(1−α)(U2−U1)
3U2−2U1 , then q∗u will exactly equal q, and

generally:

q∗u =Min

µ
2 (1− α) (U2 − U1)

3U2 − 2U1
, q

¶
(21)

Using the indifference equation for t2 and the expression for ps, we can derive the first period

demand curve and the overall profit function. Differentiating this profit function with respect to q,

we get:
∂2π

∂q2
= −2U1 +

(U2 − U1)(7U2 − 4U1)
2(2U2 − U1)

δ

∂2π
∂q2
≤ 0 for U1

U2
in the range

h
8+11δ−

√
64+64δ+9δ2

8+8δ , 8+11δ+
√
64+64δ+9δ2

8+8δ

i
of which

h
δ
1+δ , 1

i
is a subset.

Setting ∂π
∂q = 0 provides the optimal solution:

q∗ =
2(2U2 − U1) [(1 + δ)U1 − δU2 + α (δU2 − U1)]

(8 + 11δ)U1U2 − 4 (1 + δ)U21 − 7δU22

Applying the constraint on upgrade consumers using equation (21), we get the following condition

on α:

α ≥Min

⎡⎣Max

⎡⎣ δ −
³
U1
U2

´³
2 + 5δ −

³
U1
U2

´³
5 + 6δ − 2 (1 + δ)

³
U1
U2

´´´
δ −

³
U1
U2

´³
2 + 11δ −

³
U1
U2

´³
5 + 13δ − 2 (1 + 2δ)

³
U1
U2

´´´ , 0
⎤⎦ , 1

⎤⎦
Label the expression on the right as α000. Analysis of this expression with respect to α0 and α00 is

analytically intractable for any general δ. Hence, we perform a grid search where we vary δ from 0

to 1 in steps of 0.05 to observe the following:

α000 < α0 for δ > 0.21

Thus, for reasonably large δ, this threshold does not affect the thresholds developed so far and the

entire area given by α > Max(α0, α00) is classified as Zone D. If δ is smaller, the threshold between

Zones C & D is given by the following function:

Max

⎡⎣ 1

1 + 4
³
U1
U2

´ , δ −
³
U1
U2

´³
2 + 5δ −

³
U1
U2

´³
5 + 6δ − 2 (1 + δ)

³
U1
U2

´´´
δ −

³
U1
U2

´³
2 + 11δ −

³
U1
U2

´³
5 + 13δ − 2 (1 + 2δ)

³
U1
U2

´´´
⎤⎦
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Proof of Proposition 3

The boundary between Zone A and Zone B is the curve in
³
U1
U2
, α
´
space given by:

α =
1

1 + 4
³
U1
U2

´ (22)

The boundary between Zone B and Zone C is given by the line:

U1
U2
=
1

2

The boundary between Zone C and Zone D is given by:

α =Max

⎡⎣ 1

1 + 4
³
U1
U2

´ , δ −
³
U1
U2

´³
2 + 5δ −

³
U1
U2

´³
5 + 6δ − 2 (1 + δ)

³
U1
U2

´´´
δ −

³
U1
U2

´³
2 + 11δ −

³
U1
U2

´³
5 + 13δ − 2 (1 + 2δ)

³
U1
U2

´´´
⎤⎦

The boundary between Zones D and A is specified by the curve:

α =
2δ + 4(1 + δ) ·

³
U1
U2

´2
− (2 + 5δ) ·

³
U1
U2

´
2δ + 4(1 + δ) ·

³
U1
U2

´2
− (2 + 3δ) ·

³
U1
U2

´

The boundary between the Zone "large" and the Zones C & D is given by the vertical line:

U1
U2
=

δ

1 + δ

1) Zone C is bounded by the following curves:

α = 0 (bottom), U1
U2
= δ

1+δ (left), α =Max [α0, α000](top), and U1
U2
= 1

2(right)

The bound on the left is an increasing function of δ. It can be shown that α000 is a decreasing

function of δ by observing the sign of the second derivative:

dα000

dδ
= − (2− x)2(2x− 1)(2x− 3)

(δ − x (2 + 11δ − x (5 + 13δ − 2x (1 + 2δ))))2

where x = U1
U2
. dα000

dδ < 0 for x < 1
2(moderate upgrades: since this corresponds to Zone C). Since α

0

is independent of δ, the function Max [α0, α000] is decreasing in δ. As δ increases, this bound on the
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left moves towards the right (increases) and the bound on the top moves downwards (decreases).

Consequently, the size of Zone C decreases. At δ = 1, the bounds on the left and right coincide,

thus Zone C disappears.

2) At δ = 1, Zone D is bounded by the following curves:

α =
2δ+4(1+δ)· U1

U2

2
−(2+5δ)· U1

U2

2δ+4(1+δ)· U1
U2

2
−(2+3δ)· U1

U2

(bottom), U1
U2
= 1

2(left), α = 1(top), and
U1
U2
= 1(right)

Using the fact that δ = 1, the bound from the bottom simplifies to:

α =
2 + 8x2 − 7x
2 + 8x2 − 5x

where x = U1
U2
.

The area of Zone D at δ = 1 is given by the following expression:

Area(D) =
1

2
−

1Z
1
2

µ
2 + 8x2 − 7x
2 + 8x2 − 5x

¶
dx

= 0.272 > 0

Proof of Proposition 4

To analyze the market coverage when upgrade pricing is disallowed, we go back to the profit function

in the second period but with a symmetric second price. However, we need to do this separately

for Zones A & B since the parameter space for each case is different and this has an implication on

whether all old customers upgrade.

Case 1: Zone A
³
α0 < α < α00 & U1

U2
> 1

2

´
The second period profit function can be written from equation (2):

π2 = ps

µ
1− α− ps

U2 − U1

¶
+ ps

µ
(1− q)− α− ps

U2

¶

The analysis from here onwards is similar to that in Zone D. Thus, the outcome q∗u = q∗ occurs

only when α ≤ α000. But we can show that for δ = 1, α000 < α0, given δ = 1 and U1
U2

> 1
2 (proof
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available with the authors). Since α > α0, we can take q∗u < q∗ at equilibrium and the expressions

for prices and market sizes in Zone D hold. Thus, the market coverage can be obtained from the

tables in the main text:

coverage(disallowed) = q∗ +
2(1− α)U2 − q∗ · (3U2 − U1)

2U2 − U1

=
2(1− α)U2
2U2 − U1

− q∗U2
2U2 − U1

=
2(1− α)U2
2U2 − U1

− 2U2 [2U1 − U2 + α (U2 − U1)]

19U1U2 − 8U21 − 7U22

coverage(allowed) =
1− α

2
+
[(1 + δ)U1 − δU2] + α(δU2 − U1)

4 (1 + δ)U1 − 3δU2
Applying the condition coverage(disallowed) > coverage(allowed), we get the following condition

on α:

α < 1− 8x (2− x (5− 2x))
16− x (77− x (169− 64x (3− x)))

(23)

where x = U1
U2
. Denote the expression on the right as αu. We can show that α00 < αu for x > 1

2

(proof available with the authors). Since we have α0 < α < α00 in Zone A, this ensures that

inequality (23) is satisfied and the market coverage when upgrade pricing is disallowed is higher.

Case 2: Zone B
³
α ≤ α0 & U1

U2
> 1

2

´
The second period profit function can be written from equation (2):

π2 = ps

µ
1− α− ps

U2 − U1

¶
+ ps

µ
(1− q)− α− ps

U2

¶

The analysis from here onwards is similar to that in Zone D. Thus, the outcome q = q∗ occurs only

when α ≤ α000. Earlier in this proposition, we showed that for U1
U2

> 1
2 and δ = 1, we have α000 < α0

Thus, we get two subcases. When 0 ≤ α ≤ α000 we take q∗u = q∗ at equilibrium and the expressions

for Zone C apply. When α000 ≤ α ≤ α0, we take q∗u < q∗ at equilibrium and the expressions for

prices and market sizes in Zone D hold. First, we state the expression for market coverage when

upgrade pricing is allowed.

coverage(allowed) =
1− α

2
+

U1
4U1 + U2

Subcase 1: 0 ≤ α ≤ α000 and U1
U2

> 1
2
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We use the market size expressions corresponding to Zone C from the tables in the main text.

coverage(disallowed) = (1− α)
U1
U2
+ q∗

µ
U2 − U1

U2

¶
= (1− α)

U1
U2
+

Ã
2U21 − 2U1U2 + U22 − α

¡
2U21 − 3U1U2 + U22

¢
2
¡
U21 − U1U2 + U22

¢ !µ
U2 − U1

U2

¶
Applying the condition coverage(disallowed) > coverage(allowed), we get the following condition

on α:

α <
2 + x

1 + 4x

where x = U1
U2
. This is true since for Zone B, we have α ≤ α0 < 2+x

1+4x .

Subcase 2: α000 ≤ α ≤ α0and U1
U2

> 1
2

We use the market size expressions corresponding to Zone D from the tables in the main text.

coverage(disallowed) =
2(1− α)U2
2U2 − U1

− 2U2 [2U1 − U2 + α (U2 − U1)]

19U1U2 − 8U21 − 7U22

Applying the condition coverage(disallowed) > coverage(allowed), we get the following condition

on α:

α <
4 + x

¡
−19 + x

¡
57− 86x+ 32x2

¢¢
(1 + 4x) (4 + x (−3 + x (−11 + 6x)))

where x = U1
U2
. Label the expression on the right as αu. We can show that for x > 1

2 and δ = 1, we

have α0 < αu (proof available with the authors).

Since α < α0 in Zone B, we have the required result.

Proof of Proposition 5: 1) The second period profit function can be written out from equation

(2) as follows:

π2 = pu

µ
1− F

µ
α+

pu
U2 − U1

¶¶
+ pn

µ
1− q − F

µ
α+

pn
U2

¶¶

Maximizing π2 over pu and pn without regard for the constraints provides unique solutions for pu

and pn (denote them by su =
pu

U2−U1 and sn =
pn
U2
) and are obtained implicitly as solutions to:

su · h (α+ su) = 1 (24)
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and

(1− F (α+ sn)) · (1− sn · h (α+ sn)) = q (25)

where h is the hazard rate function. This result follows from Lariviere(2006). Thus we have a

unique pure strategy equilibrium in the second period subgame.

Set γ to be the lowest type consumer who purchases the product in period 1. Then, based on the

arrangement of segments, we have:

q = 1− F (γ) (26)

The second period constraints can then be derived in terms of first period decision γ.

Pricing constraint (pu ≤ pn):

(U2 − U1) · su ≤ U2 · sn

Rearranging this equation, we get:
U1
U2
≥ 1− sn

su
(27)

The above equation is valid at second period subgame equilibrium for any first period price /

demand. The rhs of equation (27) provides the required threshold.

2) Applying the upgrade sales constraint (qu ≤ q) using the definition of su and equation (26):

1− F (α+ su) ≤ 1− F (γ)

or equivalently:

γ ≤ α+ su (28)

The equilibrium second period profit is:

π∗2 = (U2 − U1) · su · (1− F (α+ su)) + U2 · sn · (1− (1− F (α+ sn)) · (1− sn · h (α+ sn))− F (α+ sn))

= (U2 − U1) · su · (1− F (α+ su)) + U2 · sn · (1− F (α+ sn))− U2 · q · sn (from equation (25)

Note here that su is a known number from equation (24) while sn is a function of q and hence a

function of γ.

The first period demand curve is derived by writing the indifference condition for t2:

p = δU2 · sn + γ · ((1 + δ)U1 − δU2) + α · (δU2 − U1) (29)
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The overall profit function including the first period is given by equation (3):

π = pq + δπ∗2 (30)

= ((1 + δ)U1 − δU2) · γ · (1− F (γ)) + α · (δU2 − U1) (1− F (γ))

+ δ(U2 − U1) · su · (1− F (α+ su)) + δU2 · sn · (1− F (α+ sn))

The above profit function is continuous function over a compact set [0, 1]. Hence, it must have

an optimal solution in γ. This is a pure strategy equilibrium for the game between the firm and

consumers. For every such equilibrium, there exists a unique pure strategy equilibrium in the second

period subgame as shown in part 1). Hence, there always exists a subgame perfect equilibrium in

pure strategies.

Taking a derivative with respect to γ and observing that su is independent of γ while sn is a

function of γ :

∂π

∂γ
= ((1 + δ)U1 − δU2) · (1− F (γ)) · (1− γh (γ))− α · (δU2 − U1) f (γ)

+ δU2 · (1− F (α+ sn)) · (1− sn · h (α+ sn)) ·
∂sn
∂γ

Observe that ∂sn
∂γ > 0 using equations (25) and (26). Hence, the last term in the profit expression is

strictly increasing. First, we show that an optimum cannot occur at the boundaries of the domain

[0, 1].

If γ = 1, then from equation (28) we must have su = 1− α, which is impossible since this violates

equation (24). If γ = 0, then equation (25) is violated when α > 0. Also, sn = 0 when α = 0 from

equation (25) and the overall profit turns out to be:

π∗ = δ(U2 − U1) · su · (1− F (su))

This cannot be the equilibrium since one can always find a strategy that earns higher profit that

this. For instance, consider the strategy p = ∞ (high enough to cause q = 0), and optimize only

for the second period for over pn. This would give overall profit corresponding to:

π∗ = δU2 · β · (1− F (β)) > δ(U2 − U1) · su · (1− F (su))

where β is the solution to equation (24) and hence β = su. Hence γ must occur in the interior

of [0,1]. For an optimum γ to occur in the interior of the range [0,1], the first derivative must
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necessarily be zero. For this, the first two terms of the profit expression in equation (30) must

together be non-increasing at the optimal γ or in terms of the derivative:

((1 + δ)U1 − δU2) · (1− F (γ)) · (1− γh(γ))− α · (δU2 − U1) · f(γ) ≤ 0

This simplifies to:

(γ − α)h(γ) + α ·
µ

δU1
(1 + δ)U1 − δU2

¶
· h(γ) ≥ 1 (31)

Notice the structure of this first term in the above expression as a function of the variable γ. It is

similar to equation (24) but with an extra term. Given that h (γ) is an increasing function of γ,

the inequality (31) is solved for a value of γ lower than in equation (24). The solution in terms of

γ is:

γ∗ ≥ su − k (α)

where k (α) is a positive value and k (0) = 0. This when combined with equation (28) ensures that:

α+ su ≥ γ∗ ≥ su − k (α) (32)

This collapses to γ = su when α = 0. Hence, α > 0 is a necessary condition. It is not sufficient

as shown by the counter example in Proposition 2 where F (θ) is uniformly distributed and there

exists a strictly positive α below α0 such that not all customers upgrade.
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